Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Short time scales

The existence of the polyad number as a bottleneck to energy flow on short time scales is potentially important for efforts to control molecnlar reactivity rising advanced laser techniqnes, discussed below in section Al.2.20. Efforts at control seek to intervene in the molecnlar dynamics to prevent the effects of widespread vibrational energy flow, the presence of which is one of the key assumptions of Rice-Ramsperger-Kassel-Marcns (RRKM) and other theories of reaction dynamics [6]. [Pg.75]

At still shorter time scales other techniques can be used to detenuiue excited-state lifetimes, but perhaps not as precisely. Streak cameras can be used to measure faster changes in light intensity. Probably the most iisellil teclmiques are pump-probe methods where one intense laser pulse is used to excite a sample and a weaker pulse, delayed by a known amount of time, is used to probe changes in absorption or other properties caused by the excitation. At short time scales the delay is readily adjusted by varying the path length travelled by the beams, letting the speed of light set the delay. [Pg.1124]

The scan rate, u = EIAt, plays a very important role in sweep voltannnetry as it defines the time scale of the experiment and is typically in the range 5 mV s to 100 V s for nonnal macroelectrodes, although sweep rates of 10 V s are possible with microelectrodes (see later). The short time scales in which the experiments are carried out are the cause for the prevalence of non-steady-state diflfiision and the peak-shaped response. Wlien the scan rate is slow enough to maintain steady-state diflfiision, the concentration profiles with time are linear within the Nemst diflfiision layer which is fixed by natural convection, and the current-potential response reaches a plateau steady-state current. On reducing the time scale, the diflfiision layer caimot relax to its equilibrium state, the diffusion layer is thiimer and hence the currents in the non-steady-state will be higher. [Pg.1927]

Focuses on force field calculations for understanding the dynamic properties of proteins and nucleic acids. Provides a useful introduction to several computational techniques, including molecular mechanics minimization and molecular dynamics. Includes discussions of research involving structural changes and short time scale dynamics of these biomolecules, and the influence of solvent in these processes. [Pg.4]

An array ion collector (detector) consists of a large number of miniature electron multiplier elements arranged side by side along a plane. Point ion collectors gather and detect ions sequentially (all ions are focused at one point one after another), but array collectors gather and detect all ions simultaneously (all ions are focused onto the array elements at the same time). Array detectors are particularly useful for situations in which ionization occurs within a very short space of time, as with some ionization sources, or in which only trace quantities of a substance are available. For these very short time scales, only the array collector can measure a whole spectrum or part of a spectrum satisfactorily in the time available. [Pg.210]

The availability of lasers having pulse durations in the picosecond or femtosecond range offers many possibiUties for investigation of chemical kinetics. Spectroscopy can be performed on an extremely short time scale, and transient events can be monitored. For example, the growth and decay of intermediate products in a fast chemical reaction can be followed (see Kinetic measurements). [Pg.18]

Micromechanical theories of deformation must be based on physical evidence of shock-induced deformation mechanisms. One of the chapters in this book deals with the difficult problem of recovering specimens from shocked materials to perform material properties studies. At present, shock-recovery methods provide the only proven teclfniques for post-shock examination of deformation mechanisms. The recovery techniques are yielding important information about microscopic deformations that occur on the short time scales (typically 10 -10 s) of the compression process. [Pg.357]

The ability of XPD and AED to measure the short-range order of materials on a very short time scale opens the door for surface order—disorder transition studies, such as the surface solid-to- liquid transition temperature, as has already been done for Pb and Ge. In the caseofbulkGe, a melting temperature of 1210 K was found. While monitoring core-level XPD photoelectron azimuthal scans as a function of increasing temperature, the surface was found to show an order—disorder temperature 160° below that of the bulk. [Pg.249]

Proton capture processes by heavy nuclei have already been briefly mentioned in several of the preceding sections. The (p,y) reaction can also be invoked to explain the presence of a number of proton-rich isotopes of lower abundance than those of nearby normal and neutron-rich isotopes (Fig. 1.5). Such isotopes would also result from expulsion of a neutron by a y-ray, i.e. (y,n). Such processes may again be associated with supernovae activity on a very short time scale. With the exceptions of " ln and " Sn, all of the 36 isotopes thought to be produced in this way have even atomic mass numbers the lightest is Se... [Pg.13]

The origin of these complications, not common in other polymers, at least on such a short time scale, is connected to the presence of the furan ring or of struc-... [Pg.89]

Gross-Butler equation is that the reactant is in isotopic equilibrium with the solvent. Given that the process under consideration occurs on an exceptionally short time scale, the assumption is not necessarily valid. A very thorough analysis of the isotopic possibilities was used to show that the interpretation presented here is nonetheless correct.25... [Pg.220]

The events that happen to an atom in a chemical reaction are on a time scale of approximately 1 femtosecond (1 fs = 10 ",5 s), the time that it takes for a bond to stretch or bend and, perhaps, break. If we could follow atoms on that time scale, we could make a movie of the changes in molecules as they take part in a chemical reaction. The new field of femto-cbemistry, the study of very fast chemical processes, is bringing us closer to realizing that dream. Lasers can emit very intense but short pulses of electromagnetic radiation, and so they can be used to study processes on very short time scales. [Pg.652]

This process does not lead to net ozone depletion because it is rapidly followed by reaction 2, which regenerates the ozone. Reactions 2 and 3 have, however, another important function, namely the absorption of solar energy as a result, the temperature increases with altitude, and this inverted temperature profile gives rise to the stratosphere (see Figure 1). In the lower layer, the troposphere, the temperature decreases with altitude and vertical mixing occurs on a relatively short time scale. In contrast, the stratosphere is very stable towards vertical mixing because of its inverted temperature profile. [Pg.25]

Although the general circulation patterns are fairly well known, it is difficult to quantify the rates of the various flows. Abyssal circulation is generally quite slow and variable on short time scales. The calculation of the rate of formation of abyssal water is also fraught with uncertainty. Probably the most promising means of assigning the time dimension to oceanic processes is through the study of the distribution of radioactive chemical tracers. Difficulties associated with the interpretation of radioactive tracer distributions lie both in the models used, nonconservative interactions, and the difference between the time scale of the physical transport phenomenon and the mean life of the tracer. [Pg.245]

The total burden, sum of inputs or exports, and average residence times for the reservoirs are listed in Table 14-5. As discussed in Chapter 4, the residence time of an element within a reservoir reflects the reactivity and exchange of that element with other reservoirs. A short residence time suggests that removal processes are rapid and significant over short time scales compared to the amount in the reservoir. [Pg.371]

The reversible formation of a complex by Ni ions and the bi dentate ligand pyridine-2-azo-p-dimethylaniline is a simple and thus reliable reaction, not accompanied by side reactions [17]. Kinetic rate law and rate constants for the reaction are known. The time demand of the reaction fits the short time scales typical for micro reactors. The strong absorption and the strong changes by reaction facilitate analysis of dynamic and spatial concentration profiles. [Pg.565]

Assuming that the average positions of the junctions are uncorrelated and that Rouse dynamics prevail on short-time scales, the scattering function of the cross-links can be approximated by [84],... [Pg.59]

The ROA spectra of partially unfolded denatured hen lysozyme and bovine ribonuclease A, prepared by reducing all the disulfide bonds and keeping the sample at low pH, together with the ROA spectra of the corresponding native proteins, are displayed in Figure 5. As pointed out in Section II,B, the short time scale of the Raman scattering event means that the ROA spectrum of a disordered system is a superposition of snapshot ROA spectra from all the distinct conformations present at equilibrium. Because of the reduced ROA intensities and large... [Pg.91]


See other pages where Short time scales is mentioned: [Pg.33]    [Pg.1080]    [Pg.2486]    [Pg.2650]    [Pg.2656]    [Pg.2659]    [Pg.2937]    [Pg.474]    [Pg.396]    [Pg.1880]    [Pg.129]    [Pg.167]    [Pg.91]    [Pg.853]    [Pg.111]    [Pg.17]    [Pg.220]    [Pg.308]    [Pg.320]    [Pg.168]    [Pg.51]    [Pg.461]    [Pg.587]    [Pg.75]    [Pg.80]    [Pg.200]    [Pg.163]    [Pg.229]    [Pg.89]    [Pg.205]    [Pg.177]    [Pg.107]    [Pg.217]   
See also in sourсe #XX -- [ Pg.172 ]

See also in sourсe #XX -- [ Pg.223 ]




SEARCH



Intra-Chain Transport at Short Time Scales

Scaled time

Short time scale behavior

Short-time-scale motions

Time scales

© 2024 chempedia.info