Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Micropore resistances

Micropore mass transfer resistance of zeoUte crystals is quantified in units of time by r /Dc, where is the crystal radius and Dc is the intracrystalline diffusivity. In addition to micropore resistance, zeolitic catalysts may offer another type of resistance to mass transfer, that is resistance related to transport through the surface barrier at the outer layer of the zeoHte crystal. Finally, there is at least one additional resistance due to mass transfer, this time in mesopores and macropores Rp/Dp. Here Rp is the radius of the catalyst pellet and Dp is the effective mesopore and macropore diffusivity in the catalyst pellet [18]. [Pg.416]

While microscopic techniques like PFG NMR and QENS measure diffusion paths that are no longer than dimensions of individual crystallites, macroscopic measurements like zero length column (ZLC) and Fourrier Transform infrared (FTIR) cover beds of zeolite crystals [18, 23]. In the case of the popular ZLC technique, desorption rate is measured from a small sample (thin layer, placed between two porous sinter discs) of previously equilibrated adsorbent subjected to a step change in the partial pressure of the sorbate. The slope of the semi-log plot of sorbate concentration versus time under an inert carrier stream then gives D/R. Provided micropore resistance dominates all other mass transfer resistances, D becomes equal to intracrystalline diffusivity while R is the crystal radius. It has been reported that the presence of other mass transfer resistances have been the most common cause of the discrepancies among intracrystaUine diffusivities measured by various techniques [18]. [Pg.419]

Zeolltlc Pamela Micro pores Actually acts as series-parallel resistance. Treatable as series resistance alone only if either macro pore or micropore resistance dominates. Dependent on sorption Isotherm, zeolite and sorbate geometry. [Pg.81]

Based upon the results shown in Figure 6 and the surface diffusion model given by equation (21), the values of ( Dos/is) which best fit the three systems were computed, both from the standpoint of assuming complete macropore control and from that of assuming the existence of micropore resistance as well, in the amount predicted from Figure 6. These values are given in Table III. [Pg.91]

The mesopores make some contribution to the adsorptive capacity, but thek main role is as conduits to provide access to the smaller micropores. Diffusion ia the mesopores may occur by several different mechanisms, as discussed below. The macropores make very Htde contribution to the adsorptive capacity, but they commonly provide a major contribution to the kinetics. Thek role is thus analogous to that of a super highway, aHowkig the adsorbate molecules to diffuse far kito a particle with a minimum of diffusional resistance. [Pg.254]

As illustrated ia Figure 6, a porous adsorbent ia contact with a fluid phase offers at least two and often three distinct resistances to mass transfer external film resistance and iatraparticle diffusional resistance. When the pore size distribution has a well-defined bimodal form, the latter may be divided iato macropore and micropore diffusional resistances. Depending on the particular system and the conditions, any one of these resistances maybe dominant or the overall rate of mass transfer may be determined by the combiaed effects of more than one resistance. [Pg.257]

Fig. 6. Concentration profiles through an idealized biporous adsorbent particle showing some of the possible regimes. (1) + (a) rapid mass transfer, equihbrium throughout particle (1) + (b) micropore diffusion control with no significant macropore or external resistance (1) + (c) controlling resistance at the surface of the microparticles (2) + (a) macropore diffusion control with some external resistance and no resistance within the microparticle (2) + (b) all three resistances (micropore, macropore, and film) significant (2) + (c) diffusional resistance within the macroparticle and resistance at the surface of the... Fig. 6. Concentration profiles through an idealized biporous adsorbent particle showing some of the possible regimes. (1) + (a) rapid mass transfer, equihbrium throughout particle (1) + (b) micropore diffusion control with no significant macropore or external resistance (1) + (c) controlling resistance at the surface of the microparticles (2) + (a) macropore diffusion control with some external resistance and no resistance within the microparticle (2) + (b) all three resistances (micropore, macropore, and film) significant (2) + (c) diffusional resistance within the macroparticle and resistance at the surface of the...
Ceramic, Metal, and Liquid Membranes. The discussion so far implies that membrane materials are organic polymers and, in fact, the vast majority of membranes used commercially are polymer based. However, interest in membranes formed from less conventional materials has increased. Ceramic membranes, a special class of microporous membranes, are being used in ultrafHtration and microfiltration appHcations, for which solvent resistance and thermal stabHity are required. Dense metal membranes, particularly palladium membranes, are being considered for the separation of hydrogen from gas mixtures, and supported or emulsified Hquid films are being developed for coupled and facHitated transport processes. [Pg.61]

Important physical properties of catalysts include the particle size and shape, surface area, pore volume, pore size distribution, and strength to resist cmshing and abrasion. Measurements of catalyst physical properties (43) are routine and often automated. Pores with diameters <2.0 nm are called micropores those with diameters between 2.0 and 5.0 nm are called mesopores and those with diameters >5.0 nm are called macropores. Pore volumes and pore size distributions are measured by mercury penetration and by N2 adsorption. Mercury is forced into the pores under pressure entry into a pore is opposed by surface tension. For example, a pressure of about 71 MPa (700 atm) is required to fill a pore with a diameter of 10 nm. The amount of uptake as a function of pressure determines the pore size distribution of the larger pores (44). In complementary experiments, the sizes of the smallest pores (those 1 to 20 nm in diameter) are deterrnined by measurements characterizing desorption of N2 from the catalyst. The basis for the measurement is the capillary condensation that occurs in small pores at pressures less than the vapor pressure of the adsorbed nitrogen. The smaller the diameter of the pore, the greater the lowering of the vapor pressure of the Hquid in it. [Pg.171]

Decorative chromium plating, 0.2—0.5 ]lni deposit thickness, is widely used for automobile body parts, appHances, plumbing fixtures, and many other products. It is customarily appHed over a nonferrous base in the plating of steel plates. To obtain the necessary corrosion resistance, the nature of the undercoat and the porosity and stresses of the chromium are all carefliUy controlled. Thus microcracked, microporous, crack-free, or conventional chromium may be plated over duplex and triplex nickel undercoats. [Pg.143]

It is a common procedure to assume certain conditions for the chromatographic system and operating conditions and, as a result, simplify equations (20) and (21). However, in many cases the assumptions can easily be over-optimistic, to say the least. It is necessary, therefore, to carefully consider the conditions that may allow such simplifying procedures and take steps to ensure that such conditions are carefully met when such expressions are used in practice. Now, the relative magnitudes of the resistance to mass transfer terms will vary with the type of columns (packed or capillary), the type of chromatography (GC or LC) and the type of particle, i.e., porous or microporous (diatomaceous support or silica gel). [Pg.278]

Since the natural passivity of aluminium is due to the thin film of oxide formed by the action of the atmosphere, it is not unexpected that the thicker films formed by anodic oxidation afford considerable protection against corrosive influences, provided the oxide layer is continuous, and free from macropores. The protective action of the film is considerably enhanced by effective sealing, which plugs the mouths of the micropores formed in the normal course of anodising with hydrated oxide, and still further improvement may be afforded by the incorporation of corrosion inhibitors, such as dichromates, in the sealing solution. Chromic acid films, in spite of their thinness, show good corrosion resistance. [Pg.697]

In the second half of the 1960s, at the same time but independently, three basically different plastic separators were developed. One was the polyethylene separator [16] already referred to in starter batteries, used only rarely in stationary batteries, but successful in traction batteries. The others were the microporous phenolic resin separator (DARAK) [18] and a microporous PVC separator [19], both of which became accepted as the standard separation for stationary batteries. They distinguish themselves by high porosity (about 70 percent) and thus very low electrical resistance and very low acid displacement, both important criteria for stationary batteries. [Pg.254]

The thin backweb, typically 0.2 mm thick with a porosity of 60 percent yields excellent electrical resistance values of 50 rafl cm2, permitting further optimization of high-performance battery constructions. These require very thin electrodes due to the overproportionally increasing polarization effects at higher current densities and consequently also low distances most modern versions have separators only 0.6 mm thick. Such narrow spacings enforce microporous separation ... [Pg.259]

A mixture of powdered poly(vinyl chloride), cyclohexanone as solvent, silica, and water is extruded and rolled in a calender into a profiled separator material. The solvent is extracted by hot water, which is evaporated in an oven, and a semiflexible, microporous sheet of very high porosity ( 70 percent) is formed [19]. Further developments up to the 75 percent porosity have been reported [85,86], but these materials suffer increasingly from brittleness. The high porosity results in excellent values for acid displacement and electrical resistance. For profiles, the usual vertical or diagonal ribs on the positive side, and as an option low ribs on the negative side, are available [86],... [Pg.275]

Much of the above also holds true for the application of microporous PVC separators (see Sec. 9.2.3.1) in open stationary batteries. Very high porosity and thus low acid displacement and electrical resistance are also offered by this system. The relevant properties are compiled in Table 12. [Pg.277]


See other pages where Micropore resistances is mentioned: [Pg.286]    [Pg.264]    [Pg.402]    [Pg.82]    [Pg.84]    [Pg.88]    [Pg.91]    [Pg.93]    [Pg.93]    [Pg.93]    [Pg.98]    [Pg.286]    [Pg.286]    [Pg.264]    [Pg.173]    [Pg.183]    [Pg.373]    [Pg.1018]    [Pg.286]    [Pg.264]    [Pg.402]    [Pg.82]    [Pg.84]    [Pg.88]    [Pg.91]    [Pg.93]    [Pg.93]    [Pg.93]    [Pg.98]    [Pg.286]    [Pg.286]    [Pg.264]    [Pg.173]    [Pg.183]    [Pg.373]    [Pg.1018]    [Pg.2786]    [Pg.283]    [Pg.300]    [Pg.73]    [Pg.374]    [Pg.379]    [Pg.132]    [Pg.578]    [Pg.353]    [Pg.156]    [Pg.2098]    [Pg.358]    [Pg.236]    [Pg.552]   
See also in sourсe #XX -- [ Pg.98 ]




SEARCH



Mass transfer resistance micropores

Micropore mass transfer resistance

© 2024 chempedia.info