Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Microemulsions dispersed

A microemulsion (p.E) is a thermodynamically stable, transparent (in the visible) droplet type dispersion of water (W) and oil (O a saturated or unsaturated hydrocarbon) stabilized by a surfactant (S) and a cosurfactant (CoS a short amphiphile compound such as an alcohol or an amine) [67]. Sometimes the oil is a water-insoluble organic compound which is also a reactant and the water may contain mineral acids or salts. Because of the small dispersion size, a large amount of surfactant is required to stabilize microemulsions. The droplets are very small (about 100-1000 A [68]), about 100 times smaller than those of a typical emulsion. The existence of giant microemulsions (dispersion size about 6000 A) has been demonstrated [58]. [Pg.281]

Electrical conductivity is an easily measured transport property, and percolation in electrical conductivity appears a sensitive probe for characterizing microstructural transformations. A variety of field (intensive) variables have been found to drive percolation in reverse microemulsions. Disperse phase volume fraction has been often reported as a driver of percolation in electrical conductivity in such microemulsions [17-20]. [Pg.251]

Kumar, A., Uddin, H., Kunieda, H., Furukawa, H. and Harashima, A. (2001) Solubilization enhancing effect of A-B-type silicone surfactants in microemulsions. /. Dispersion Sci. Technol, 22(2-3), 245-53. [Pg.201]

The ideas of the relevance of phase diagrams and thermodynamic stability as well as the bicontinuous structure were certainly not accepted immediately and many publications until well into the 1990s caused confusion as some authors still took droplet structures for granted. A title for a paper [31] in Nature as late as 1986 entitled Occurrence of liquid-crystalline mesophases in microemulsion dispersions illustrates both the slow acceptance and the ignorance of previous work on phase diagrams. [Pg.392]

Tabony, J. (1986) Occurrence of liquid-crystalline mesophases in microemulsion dispersions. Nature, 320, 339-341. [Pg.396]

Solubilization enhandng effect of A-B-type silicone surfactants in microemulsions. /. Dispersion Sci. Technol, 22, 245-253. [Pg.304]

Fig. 3 Synthesis of ZnO precursor by microemulsions dispersed in an oil phase. Reprinted from [90], Copyright 2014, with permission from Elsevier... Fig. 3 Synthesis of ZnO precursor by microemulsions dispersed in an oil phase. Reprinted from [90], Copyright 2014, with permission from Elsevier...
Few fonnulations based on double emulsions (in which droplets of the dispersed phase further contain smaller dispersed droplets) are on the market as these consist of large, polydispersed droplets (10-100 (xm) that are thermodynamically unstable. ControUmg the release of compounds incorporated in double emulsions is normally achieved by stabilizing the interface of the inner emulsion, careful composition of the oil and aqueous phases, and/or stabilization of the secondary interface (Davis et al, 1985 Garti, 1997). However, most double emulsions tend to release entrapped compounds in an uncontrolled manner. A novel possibility for the stabilization of the inner emulsion is to use microemulsions. Pilman and co-workers (1980) reported the use of microemulsions dispersed within the inner phase of water-in-oil-in-water (w/o/w) duplex emulsions, and stabilized in a sodium caseinate solution resulting in emulsified microemulsions. In principle, these emulsified microemulsions may be used as controlled delivery system for nutraceuticals and pharmaceuticals. [Pg.159]

Cases (i) and (ii) can be analyzed together with other polymerization techniques in dispersed media (miniemulsion, microemulsion, dispersion, etc.) used to produce the desired functionalized latex particles and taking into consideration the reactor type used to carry out the different polymerization reactions. [Pg.264]

However, the formal differences between microemulsions and macroemulsions are well defined. A microemulsion is a single, thermodynamically stable, equihbrium phase a macroemulsion is a dispersion of droplets or particles that contains two or more phases, which are Hquids or Hquid crystals (48). [Pg.153]

Fig. 8. Emulsion morphology diagram, illustrating where the microemulsion in various macroemulsion morphologies is a continuous phase or dispersed phase. Morphology boundaries (—), aqueous, continuous (--------------), oleic, continuous (--), microemulsion, continuous. Fig. 8. Emulsion morphology diagram, illustrating where the microemulsion in various macroemulsion morphologies is a continuous phase or dispersed phase. Morphology boundaries (—), aqueous, continuous (--------------), oleic, continuous (--), microemulsion, continuous.
Emulsifiers are used in many technical applications. Emulsions of the oil-in-water and the water-in-oil type are produced on a large scale in the cosmetic industry. Other fields of employment are polymerization of monomers in emulsions and emulsification of oily and aqueous solutions in lubricants and cutting oils. In enhanced oil recovery dispersing of crude oil to emulsions or even microemulsions is the decisive step. [Pg.601]

The term microemulsion was first introduced in 1958 and 15 years later the microemulsion was recognized as a special kind of colloidal dispersion [58]. [Pg.281]

On a microscopic scale, a microemulsion is a heterogeneous system and, depending on the relative amounts of the constituents, three main types of structures can be distinguished [69] oil in water (OAV, direct micellar structure), water in oil (W/O, reverse micellar structure) and a bicontinuous structure (B) (Figure 6.1). By adding oil in water, OAV dispersion evolves smoothly to a W/O dispersion via bicontinuous phases. [Pg.281]

By performing in situ the polymerization of acrylamide in water/AOT/toluene microemulsions, clear and stable inverse latexes of water-swollen polyacrylamide particles stabilized by AOT and dispersed in toluene have been found [192-194], It was shown that the final dispersions consist of two species of particles in equilibrium, surfactant-coated polymer particles (size about 400 A) with narrow size distribution and small AOT micelles (size about 30 A). [Pg.490]

Moreover, stable liquid systems made up of nanoparticles coated with a surfactant monolayer and dispersed in an apolar medium could be employed to catalyze reactions involving both apolar substrates (solubilized in the bulk solvent) and polar and amphiphilic substrates (preferentially encapsulated within the reversed micelles or located at the surfactant palisade layer) or could be used as antiwear additives for lubricants. For example, monodisperse nickel boride catalysts were prepared in water/CTAB/hexanol microemulsions and used directly as the catalysts of styrene hydrogenation [215]. [Pg.491]

Nanoparticles solubilized in w/o microemulsions have been obtained by performing in situ suitable reactions [196], by dispersion of particles [219,220], or by controlled nanoprecipitation of a solubilizate [221,222]. [Pg.491]

Another way to obtain, under suitable conditions, stable dispersions of sur-factant-stabihzed nanoparticles consists in the direct suspension of some materials in w/o microemulsions. The formation of stable dispersions of rutile (size 80-450 mn) and carbon black (200-500 nm) in AOT// -xylene and of rutile, lead chloride, aluminium, antimony in solutions of calcium soaps in benzene has been reported [219,220],... [Pg.492]

Another method is based on the evaporation of a w/o microemulsion carrying a water-soluble solubilizate inside the micellar core [221,222], The contemporaneous evaporation of the volatile components (water and organic solvent) leads to an increase in the concentration of micelles and of the solubilizate in the micellar core. Above a threshold value of the solubilizate concentration, it starts to crystallize in confined space. Nanoparticle coalescence could be hindered by surfactant adsorption and nanoparticle dispersion within the surfactant matrix. [Pg.493]

By dynamic light scattering it was found that, in surfactant stabilized dispersions of nonaqueous polar solvents (glycerol, ethylene glycol, formamide) in iso-octane, the interactions between reversed micelles are more attractive than the ones observed in w/o microemulsions, Evidence of intermicellar clusters was obtained in all of these systems [262], Attractive intermicellar interactions become larger by increasing the urea concentration in water/AOT/ -hexane microemulsions at/ = 10 [263],... [Pg.495]

The rates of multiphase reactions are often controlled by mass tran.sfer across the interface. An enlargement of the interfacial surface area can then speed up reactions and also affect selectivity. Formation of micelles (these are aggregates of surfactants, typically 400-800 nm in size, which can solubilize large quantities of hydrophobic substance) can lead to an enormous increase of the interfacial area, even at low concentrations. A qualitatively similar effect can be reached if microemulsions or hydrotropes are created. Microemulsions are colloidal dispersions that consist of monodisperse droplets of water-in-oil or oil-in-water, which are thermodynamically stable. Typically, droplets are 10 to 100 pm in diameter. Hydrotropes are substances like toluene/xylene/cumene sulphonic acids or their Na/K salts, glycol.s, urea, etc. These. substances are highly soluble in water and enormously increase the solubility of sparingly. soluble solutes. [Pg.9]

Surfactants and Colloids in Supercritical Fluids Because very few nonvolatile molecules are soluble in CO2, many types of hydrophilic or lipophilic species may be dispersed in the form of polymer latexes (e.g., polystyrene), microemulsions, macroemulsions, and inorganic suspensions of metals and metal oxides (Shah et al., op. cit.). The environmentally benign, nontoxic, and nonflammable fluids water and CO2 are the two most abundant and inexpensive solvents on earth. Fluorocarbon and hydrocarbon-based surfactants have been used to form reverse micelles, water-in-C02... [Pg.15]

Lagues et al. [17] found that the percolation theory for hard spheres could be used to describe dramatic increases in electrical conductivity in reverse microemulsions as the volume fraction of water was increased. They also showed how certain scaling theoretical tools were applicable to the analysis of such percolation phenomena. Cazabat et al. [18] also examined percolation in reverse microemulsions with increasing disperse phase volume fraction. They reasoned the percolation came about as a result of formation of clusters of reverse microemulsion droplets. They envisioned increased transport as arising from a transformation of linear droplet clusters to tubular microstructures, to form wormlike reverse microemulsion tubules. [Pg.251]

FIG. 5 Order parameter for disperse pseudophase water (percolating clusters versus isolated swollen micelles and nonpercolating clusters) derived from self-diffusion data for brine, decane, and AOT microemulsion system of single-phase region illustrated in Fig. 1. The a and arrow denote the onset of percolation in low-frequency conductivity and a breakpoint in water self-diffusion increase. The other arrow (b) indicates where AOT self-diffusion begins to increase. [Pg.257]


See other pages where Microemulsions dispersed is mentioned: [Pg.210]    [Pg.501]    [Pg.420]    [Pg.193]    [Pg.491]    [Pg.145]    [Pg.210]    [Pg.501]    [Pg.420]    [Pg.193]    [Pg.491]    [Pg.145]    [Pg.204]    [Pg.2361]    [Pg.154]    [Pg.133]    [Pg.224]    [Pg.535]    [Pg.47]    [Pg.91]    [Pg.490]    [Pg.491]    [Pg.496]    [Pg.234]    [Pg.293]    [Pg.150]    [Pg.251]    [Pg.252]    [Pg.252]    [Pg.253]    [Pg.253]    [Pg.254]   
See also in sourсe #XX -- [ Pg.146 , Pg.147 , Pg.147 ]




SEARCH



© 2024 chempedia.info