Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ionic-nonionic mixed micelles

Shiloach, A., and D. Blankschtein. 1998b. Measurement and prediction of ionic/nonionic mixed micelle formation and growthLangmuir14 7166-7182. [Pg.305]

Shiloah, A. Blankschtein, D. Measurements and predictions of ionic/nonionic mixed micelle formation and growth. J. Langmuir 1998. 14, 7166—7182, and references therein. [Pg.866]

Bucci, S., Fagotti, C., Degiorgio, V., and Piazza, R. (1991). Small-angle neutron-scattering study of ionic-nonionic mixed micelles. Langmuir 7, 824-826. [Pg.400]

Yoshida, K., Dubin, P.L. Complex formation between polyacrylic acid and cat-ionic/nonionic mixed micelles effect of pH on electrostatic interaction and hydrogen bonding. Colloids Surf. A 1998, 147(1-2), 161-167. [Pg.335]

Surfactants employed for w/o-ME formation, listed in Table 1, are more lipophilic than those employed in aqueous systems, e.g., for micelles or oil-in-water emulsions, having a hydrophilic-lipophilic balance (HLB) value of around 8-11 [4-40]. The most commonly employed surfactant for w/o-ME formation is Aerosol-OT, or AOT [sodium bis(2-ethylhexyl) sulfosuccinate], containing an anionic sulfonate headgroup and two hydrocarbon tails. Common cationic surfactants, such as cetyl trimethyl ammonium bromide (CTAB) and trioctylmethyl ammonium bromide (TOMAC), have also fulfilled this purpose however, cosurfactants (e.g., fatty alcohols, such as 1-butanol or 1-octanol) must be added for a monophasic w/o-ME (Winsor IV) system to occur. Nonionic and mixed ionic-nonionic surfactant systems have received a great deal of attention recently because they are more biocompatible and they promote less inactivation of biomolecules compared to ionic surfactants. Surfactants with two or more hydrophobic tail groups of different lengths frequently form w/o-MEs more readily than one-tailed surfactants without the requirement of cosurfactant, perhaps because of their wedge-shaped molecular structure [17,41]. [Pg.472]

MEKC is also performed using cationic, nonionic, and zwitterionic surfactants. Widely employed are cationic surfactant consisting of a long chain tetralkylammonium salt, such as cetyltrimeth-ylammonium bromide, which causes the reversal of the direction of the EOE, due to the adsorption of the organic cation on the capillary wall. Other interesting options include the use of mixed micelles resulting from the simultaneous incorporation into the BGE of ionic and nonionic or ionic and zwitterionic surfactants. Chiral surfactants, either natural as bile salts [207] or synthetic [208] are employed for enantiomer separations. [Pg.191]

The effects of dilution of the micellar surface charge on the rate of alkaline hydrolysis of a betaine ester surfactant have been investigated for a mixture of decyl betainate and a nonionic surfactant with a similar CMC. It was shown that the relation between micellar composition and the hydrolysis rate essentially parallels the relation between micellar composition and counterion binding to mixed micelles made up of ionic and nonionic surfactants [20]. [Pg.72]

Mixed Micelles Showing Negative Deviation -from Ideality. In an aqueous solution containing a mixture o-f Cll an ionic sur-factant and a nonionic sur-factant, or C21 an anionic sur-factant and a cationic sur-factant, or C33 a zwitterionic sur-factant and an anionic sur-factant, the CMC o-f the mixed sur-factant system exhibits a CMC which is substantially less than that predicted by Equation 1 (9.12.18-37). This means that the mixed micelle -formation is enhanced and that the mixing process in the micelle shows negative deviation -from ideality. This is demonstrated -for a cationic/nonionic system in Figure 1. [Pg.9]

Counterion Binding. The fractional counterion binding on charged mixed micelles is of fundamental interest because it gives an indication of surface charge density which is related to the mechanism of mixing nonidealities in ionic/nonionic micelles. It is also a necessary... [Pg.14]

Below the CMC, the surfactant mixing in monolayers composed of similarly structured surfactants approximately obeys ideal solution theory. This means that the total surfactant concentration required to attain a specified surface tension for a mixture is intermediate between those concentrations for the pure surfactants involved. For mixtures of ionic/nonionic or anionic/cationic surfactants, below the CMC, the surfactant mixing in the monolayer exhibits negative deviation from ideality (i.e., the surfactant concentration required to attain a specified surface tension is less than that predicted from ideal solution theory). The same guidelines already discussed to select surfactant mixtures which have low monomer concentrations when micelles are present would also apply to the selection of surfactants which would reduce surface tension below the CMC. [Pg.16]

If the mixed micelle model already presented is used to predict the ionic surfactant monomer concentration, and a simple concentration—based solubility product is assumed to hold between the unbound counterion and monomer, the salinity tolerance of an anionic/nonionic surfactant mixture can be accurately predicted (91). supporting this view of the mechanism of tolerance enhancement by nonionic surfactant. [Pg.22]

In order to define a ionic/nonionic surfactant solution with high salinity/hardness tolerance, the following criterion should be followed. The mixed micelle should have as large of a negative deviation from ideality as possible. Surfactant mixture characteristics which result in this have already been discussed. The nonionic surfactant should have a high cloud point. Otherwise the amount of nonionic surfactant which can be added to the system is limited to low levels before phase separation occurs. If possible, a mixed ionic surfactant should be used for reasons Just discussed. There is no such benefit to using mixed nonionic surfactants, although this is not necessarily detrimental either. [Pg.22]

The mass action model (MAM) for binary ionic or nonionic surfactants and the pseudo-phase separation model (PSM) which were developed earlier (I EC Fundamentals 1983, 22, 230 J. Phys. Chem. 1984, 88, 1642) have been extended. The new models include a micelle aggregation number and counterion binding parameter which depend on the mixed micelle composition. Thus, the models can describe mixtures of ionic/nonionic surfactants more realistically. These models generally predict no azeotropic micellization. For the PSM, calculated mixed erne s and especially monomer concentrations can differ significantly from those of the previous models. The results are used to estimate the Redlich-Kister parameters of monomer mixing in the mixed micelles from data on mixed erne s of Lange and Beck (1973), Funasaki and Hada (1979), and others. [Pg.44]

Many models have appeared in the literature describing interactions of surfactants in mixed micelles (1-14). For nonionic surfactants mixing nonideally, the key references up to 1984 have been recently summarized (15). Comparatively few models have been developed for ionic surfactants (5,6,10-12) and fewer models which acknowledge ionic/nonionic interactions are available (5-7). Since many practical surfactant mixtures involve ionic and nonionic surfactants which interact with each other and with added salts, it is important to develop explicit ionic/nonionic models. [Pg.44]

The purpose of this paper is to develop realistic specific models of mixed micellization which (i) can describe properties of ionic/nonionic surfactant mixtures and effects of salt (ii) lead to tractable calculations and (iii) can be used for extracting information on micelle mixing and monomer concentrations from the limited experimental data which are usually... [Pg.44]

The nonionic/ionic model rather than the nonionic/nonionic or the ionic/ionic model should be used for more precise determination of the nonideality-of-mixing parameters in the mixed micelles in nonionic/ionic mixtures. [Pg.59]

The purpose of this paper will be to develop a generalized treatment extending the earlier mixed micelle model (I4) to nonideal mixed surfactant monolayers in micellar systems. In this work, a thermodynamic model for nonionic surfactant mixtures is developed which can also be applied empirically to mixtures containing ionic surfactants. The form of the model is designed to allow for future generalization to multiple components, other interfaces and the treatment of contact angles. The use of the pseudo-phase separation approach and regular solution approximation are dictated by the requirement that the model be sufficiently tractable to be applied in realistic situations of interest. [Pg.103]

Our data, to date, show that molecular interaction between two surfactants, both in mixed monolayers at the aqueous solution/air interface and in mixed micelles in aqueous solution, increases in the order POE nonionic-POE-nonionic < POE nonionic-betaine < betaine-cationic < POE nonionic-ionic (cationic, anionic) betaine-anionic cationic-anionic. The greatest probability of synergism exists, therefore, in cationic-anionic mixtures, followed by betaine-anionic mixtures. Synergism can exist in POE nonionic-ionic mixtures only if the surfactants involved have the proper structures. [Pg.162]

Large negative deviations from ideality are well known when mixed micelles are formed between ionic and nonionic surfactants (11—15.21.24) Negative deviations from ideality have been reported for mixed ionic/nonionic admicelle formation (26), although the degree of nonideality was not quantified. Since this work has pointed out the similarities and differences between mixed micelles and admicelles, the study of these systems should elucidate this relationship even further and will be the subject of future publications. [Pg.214]

As the temperature of a mixed surfactant system is increased above its cloud point, the coacervate (concentrated) phase may go from a concentrated micellar solution mixed ionic/nonionic systems, it would be of interest to measure thermodynamic properties of mixing in this coacervate as this temperature increased to see if the changes from micelle to concentrated coacervate were continuous or if discontinuities occurred at certain temperatures/compositions. The similarities and differences between the micelle and coacervate could be made clearer by such an experiment. [Pg.334]

Marszall (1988) studied the effect of electrolytes on the cloud point of mixed ionic-nonionic surfactant solutions such as SDS and Triton X-100. It was found that the cloud point of the mixed micellar solutions is drastically lowered by a variety of electrolytes at considerably lower concentrations than those affecting the cloud point of nonionic surfactants used alone. The results indicate that the factors affecting the cloud point phenomena of mixed surfactants at very low concentrations of ionic surfactants and electrolytes are primarily electrostatic in nature. The change in the original charge distribution of mixed micelles at a Lxed SDS-Triton X-100 ratio (one molecule per micelle), as indicated by the cloud point measurements as a function of electrolyte concentration, depends mostly on the valency number of the cations (counterions) and to some extent on the kind of the anion (co-ion) and is independent of the type of monovalent cation. [Pg.285]

Others have studied the volumetric changes occurring in mixed micelles of anionic-anionic and nonionic-nonionic surfactants as a determinant of intermolecular interactions and a measure of the thermodynamic ideality of mixing. In particular, Funasaki et al. (1986) have studied the volumetric behavior of mixed micelles of ionic and nonionic surfactants and analyzed their results in terms of regular solution theory. They found that in water, anionic surfactants such as SDS bind to PEG,... [Pg.287]

If the standard operating conditons do not provide the required separation, selectivity can be modified by changing a number of variables, including the nature of the surfactant and the aqueous phases. Altering the hydrophilic end of the surfactant has a dramatic effect since this is the end of the micelle that interacts with the solutes. Alternatively, a second surfactant can be added to form a mixed micelle. The addition of a nonionic surfactant to an ionic one decreases the migration time window so that the migration time of all the analytes decreases nonionic chiral surfactants are often added to MECC buffers for the separation of enantiomers. [Pg.164]

Materials and Polymerization. Styrene and methyl methacrylate were obtained from commercial sources and were distilled to remove inhibitor. After distillation, the monomers were stored, under nitrogen, in a refrigerator. For the mixed emulsifier system, Emulphogene BC840(GAF), tridecyloxy-polyethylene-oxyethanol, was used as the nonionic constituent, and sodium lauryl sulfate (K and K Labs) was used as the ionic constituent. The sodium lauryl sulfate was at a concentration below its cms whereas the BD-840 was at a concentration above its cmc. This emulsifier system has been shown to yield mixed micelles (2)/ having a low ionic change (2)/ which produce latlces with rather narrow particle size distributions (2 ) ... [Pg.198]

Fic. 2. Schematic diagrams of bile salt micelles (A) or mixed micelles (B), showing die molecular arrangement of bile salts and lecithin. The closed circles represent nonionic polar groups, and the open circles represent ionic polar groups of the molecules. [Redrawn from ref. (M20) with permission from Biochemistry 19. Copyri t (1980) American Chemical Society.]... [Pg.174]


See other pages where Ionic-nonionic mixed micelles is mentioned: [Pg.12]    [Pg.13]    [Pg.15]    [Pg.290]    [Pg.12]    [Pg.13]    [Pg.15]    [Pg.290]    [Pg.142]    [Pg.178]    [Pg.11]    [Pg.22]    [Pg.53]    [Pg.72]    [Pg.103]    [Pg.184]    [Pg.328]    [Pg.299]    [Pg.169]    [Pg.41]    [Pg.124]    [Pg.193]    [Pg.34]    [Pg.227]    [Pg.3326]    [Pg.167]    [Pg.42]    [Pg.356]   


SEARCH



Ionic-nonionic mixed micelles ideality

Ionic-nonionic mixed micelles negative deviation from

Micell mixed

Micelle ionic

Micelles mixed

Micelles nonionic

Mixed Ionic

Mixing micelles

Nonionic mixed

Nonionizing

© 2024 chempedia.info