Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Methyl methacrylate free-radical emulsion

Typically, carboxylate ionomers are prepared by direct copolymerization of acrylic or methacrylic acid with ethylene, styrene or similar comonomers by free radical copolymerization (65). More recently, a number of copolymerizations involving sulfonated monomers have been described. For example, Weiss et al. (66-69) prepared ionomers by a free-radical, emulsion copolymerization of sodium sulfonated styrene with butadiene or styrene. Similarly, Allen et al. (70) copolymerized n-butyl acrylate with salts of sulfonated styrene. The ionomers prepared by this route, however, were reported to be "blocky" with regard to the incorporation of the sulfonated styrene monomer. Salamone et al. (71-76) prepared ionomers based on the copolymerization of a neutral monomer, such as styrene, methyl methacrylate, or n-butyl acrylate, with a cationic-anionic monomer pair, 3-methacrylamidopropyl-trimethylammonium 2-acrylamlde-2-methylpropane sulfonate. [Pg.20]

Louie, B. M., W. Y. Chiu, and D. S. Soong, Control of Free-Radical Emulsion Polymerization of Methyl Methacrylate by Oxygen Injection I. Modeling Study, J. Appl. Polym. Sci., 30, 3189-3223, 1985. [Pg.336]

Monomer and initiator must be soluble in the liquid and the solvent must have the desired chain-transfer characteristics, boiling point (above the temperature necessary to carry out the polymerization and low enough to allow for ready removal if the polymer is recovered by solvent evaporation). The presence of the solvent assists in heat removal and control (as it also does for suspension and emulsion polymerization systems). Polymer yield per reaction volume is lower than for bulk reactions. Also, solvent recovery and removal (from the polymer) is necessary. Many free radical and ionic polymerizations are carried out utilizing solution polymerization including water-soluble polymers prepared in aqueous solution (namely poly(acrylic acid), polyacrylamide, and poly(A-vinylpyrrolidinone). Polystyrene, poly(methyl methacrylate), poly(vinyl chloride), and polybutadiene are prepared from organic solution polymerizations. [Pg.186]

Most emulsion polymerization is based on free-radical reactions, involving monomers (e.g., styrene, butadiene, vinyl acetate, vinyl chloride, methacrylic acid, methyl methacrylate, acrylic acid, etc.), surfactant (sodium dodecyl diphenyloxide disulfonate), initiator (potassium persulfate), water (18.2MQ/cm), and other chemicals and reagents such as sodium hydrogen carbonate, toluene, eluent solution, sodium chloride, and sodium hydroxide. [Pg.864]

The major limitations to the use of ESR other than for fundamental studies of the radical and other trapped species formed during reactive processing are the experimental requirements of the apparatus. There has been success in using ESR to monitor the concentration of the propagating free radicals during the emulsion batch polymerization of methyl methacrylate (Parker et al, 1996) by using a time-sweep method for data acquisition and... [Pg.210]

Emulsion polymerizations are carried out in one liquid phase dispersed within another. The monomer or a solution of the monomer is dispersed with the aid of an emulsifier in the homogeneous phase and polymerized, for example, with free radical initiators. The product is a colloidal dispersion of the polymer. Since dispersions have lower viscosity than the melt, they can be handled much better. Also, the temperature control is easier. Typical emulsion polymers are poly(methyl methacrylate), poly(methacrylic acid), polystyrene, and poly(vinyl chloride). Two special applications of emulsion polymerization are the making of well-defined dispersion particles that may contain only one or few polymer molecules, and the possibility to make better defined molecular sizes by controlling the growth periods. [Pg.217]

Copolymer composition has a direct effect on the Tg of the polymer, which determines the minimum film forming temperature (MFFT) of the latex and the application. Thus, a 95/5 wt/wt butyl acrylate/methyl methacrylate is an adhesive, whereas a 50/50 copolymer of the same monomers is a binder for paints. Copolymer composition affects properties such as resistance to hydrolysis [4] and weatherability. In situ formed blends of random copolymers of different compositions may be beneficial for application properties [5]. Conventional free-radical polymerization, which is the process used to manufacture almost all commercial emulsion polymers, does not allow the production of block and gradient copolymers (accessible by means of controlled radical polymerization [6], Section 3.3). Nevertheless, graft copolymers are frequently formed, and the extension of grafting largely determines the application properties. Thus, grafting determines the size of the rubber domains in ABS polymers, and the toughness of these polymers increases with rubber size. [Pg.235]

In by far the largest number of cases of free radical copolymerization, the reactivity ratios are practically independent of the nature of the starting reaction (thermal, photochemical, radical-forming type) and the site of propagation (bulk, solution, emulsion). Ionic copolymerization, by contrast, leads to quite different parameters (Table 22-13). Thus copolymerizations can be employed as a diagnostic tool for initiators whose mode of action is unknown, differentiating between free radical copolymerization and the nonradical mechanism (Table 22-14). On such evidence, boron alkyls appear to be free radical initiators in the copolymerization of methyl methacrylate with acrylonitrile, whereas lithium alkyls are anionic initiators. [Pg.791]

Emulsion polymerization requires free-radical polymerizable monomers which form the structure of the polymer. The major monomers used in emulsion polymerization include butadiene, styrene, acrylonitrile, acrylate ester and methacrylate ester monomers, vinyl acetate, acrylic acid and methacrylic acid, and vinyl chloride. All these monomers have a different stmcture and, chemical and physical properties which can be considerable influence on the course of emulsion polymerization. The first classification of emulsion polymerization process is done with respect to the nature of monomers studied up to that time. This classification is based on data for the different solubilities of monomers in water and for the different initial rates of polymerization caused by the monomer solubilities in water. According to this classification, monomers are divided into three groups. The first group includes monomers which have good solubility in water such as acrylonitrile (solubility in water 8%). The second group includes monomers having 1-3 % solubility in water (methyl methacrylate and other acrylates). The third group includes monomers practically insoluble in water (butadiene, isoprene, styrene, vinyl chloride, etc.) [12]. [Pg.39]

Latex with hydroxyl functionalised cores of a methyl methacrylate/butyl acrylate/2-hydroxyethyl methacrylate copolymer, and carboxyl functionalised shells of a methyl methacrylate/butyl acrylate/methacrylic acid copolymer was prepared by free radical polymerisation. The latex was crosslinked using a cycloaliphatic diepoxide added by three alternative modes with the monomers during synthesis dissolved in the solvent and added after latex preparation and emulsified separately, then added. The latex film properties, including viscoelasticity, hardness, tensile properties, and water adsorption were evaluated as functions of crosslinker addition mode. Latex morphology was studied by transmission electron and atomic force microscopy. Optimum results were achieved by introducing half the epoxide by two-step emulsion polymerisation, the balance being added to the latex either in solution or as an emulsion. 8 refs. [Pg.45]

Other Mechanistic Aspects.—Stannett et al have reported on the kinetics of the emulsion polymerization of styrene initiated by irradiation with cobalt-60 y-rays. The conclusion is reached that Smith-Ewart Case 2 kinetics are obeyed if the reaction system is such that compliance with Smith-Ewart Case 2 would be expected were initiation effected by the thermal decomposition of potassium persulphate. The efficiency of utilization of the radicals produced by radiolysis of the aqueous phase appears to be in the range 0.3—0.5. Chatterjee, Banerjee, and Konar have investigated the molecular weight of polystyrene produced by emulsion polymerization at low monomer concentration, and compared their observations with the predictions of the theories of Harkins, Smith-Ewart, and Gardon. These workers have also investigated the dependence of rate of polymerization upon monomer concentration in the emulsion polymerization of styrene. Arai, Arai, and Saito" have studied the persulphate-initiated surfacant-free emulsion polymerization of methyl methacrylate, and have proposed a model for the reaction. [Pg.36]

The polymers produced through emulsion free radical polymerization are synthesized from modified alkenes (eg, styrene, methyl methacrylate, methyl acrylate, butyl acrylate, vinyl acetate) and are characterized by the presence of C—C bonds that bind the monomers used. As a result, the obtained materials can be biocompatible [as for poly(methyl methacrylate)], but they are not biodegradable [9]. [Pg.269]

Grafting a second polymer to the NR molecule in the latex stage is one of the many routes to chemically modified NR. An olefinic monomer with unsaturated double bonds such as methyl methacrylate (MMA), styrene and acrylonitrile are important monomers used for such grafting. " For example, MMA monomer is first converted into an emulsion with some suitable emulsifiers and then mixed with NR latex to copolymerize the monomer in a seeded emulsion polymerization process. It is important to ensure the seed latex particles are saturated with the monomer supplied through diffusion from the emulsified monomer droplets. An oil- or water-soluble initiator can be used to start the reaction. With proper control of the system and reaction conditions, the free radical reaction can be made to propagate within the latex particles as far as possible, so that only grafted NR occurs, without the formation of free homopolymer from the monomer. In this way only chemically modified NR... [Pg.111]

The copolymerization of a,p-unsaturated ketones has been studied extensively in order to improve the poor chemical and thermal stability exhibited by the homopolymers. The vinyl ketones have been copolymerized with most of the common vinyl and diene monomers. The data are given in Ref. [326]. For initiation, the same reagents could be used as for free-radical homopolymerization. Copolymerization was carried out in bulk [371] and in emulsion systems [372]. In copolymerization with methyl methacrylate, vinyl acetate [373], and styrene [371] it was concluded that the relative reactivities of the vinyl ketones increase with the increasing electron-withdrawing nature of the vinyl ketone substituent. Polar and steric effects are not observed. Most of the work has been directed toward the preparation of oil- and solvent-resistant rubbers to replaee styrene-butadiene rubber. Emulsion eopolymerization of butadiene with methyl isopropenyl ketone yielded rubbers with good solvent resistance and low temperature flexibility, but the products tended to harden on storage and were not compatible with natural rubber [374]. The reactive earbonyl function caused sensitivity to alkine reagents. Copolymers of butylacrylate and methyl vinyl ketone, for example, can be erosslinked by treatment with hydrazine [375]. [Pg.646]

Free-radical copolymerization of alkyl vinyl ethers has been carried out with the following typical monomers acrylic acid (bulk and emulsion) [39,40], acrylonitrile (emulsion) [26,27], acrylic esters (emulsion) [41], methyl methacrylate (bulk) [42], maleic anhydride (solution) [43], vinyl acetate (bulk and emulsion) [27,44,45], and vinyl chloride (emulsion) [26, 37,46]. The properties of these and other copolymers are described in a technical bulletin by General Aniline Film Corporation [38]. [Pg.247]

The preparation of waterborne latices by emulsion polymerization usually employs polymerization in aqueous micellar surfactant solutions. The simplest manifestation of the process involves the presence in an aqueous medium of emulsified monomer drops, micellar surfactant, and a water-soluble polymerization (free-radical) initiator. A combination of monomers is often used, exemplified by combinations of compounds such as methyl methacrylate, butyl acrylate, and styrene. Typically monomers have only slight water solubility. The classic qualitative picture of this process was described by Harkins [2] more than 60 years ago. A schematic of that process is shown in Figure 9.1. The key step is solubilization of the monomers in the micelles where polymerization is initiated. Both the low solubility of the monomer and the relatively low surface area of the monomer emulsion drops means that initiation of polymerization is essentially confined to the micelles. Polymerization now proceeds as more monomer is transported to the swelling micelles from the... [Pg.481]

Ceresa [114] demonstrated the possibility of synthesizing block copolymer by subjecting a starch emulsion with free radical polymerizable monomers to repeated freezing at — 200°C and subsequent thawing to room temperature. He used acrylonitrile, owing to the ease of separating the insoluble block copolymer fraction (see Table 5.22). Simionescu and co-workers applied the same technique to cellulose and acrylonitrile solutions [167], and Fujii and co-workers to solutions of starch and to the vinyl polymers, for example, polystyrene, poly(methyl methacrylate), poly(vinyl acetate), and poly(acrylic acid) [144]. [Pg.237]

Copolymers of myrcene with styrene, methyl methacrylate (MMA), or p-fluorostyrene and of myrcene with styrene and 1,3-butadiene, to yield a synthetic rubber, have been synthesized by free radical copolymerization [35] and by emulsion polymerization [36], respectively. [Pg.156]

Unzueta and Forcada [31] studied the emulsion copolymerization of methyl methacrylate and n-butyl acrylate. It was assumed that both micellar nucle-ation and homogeneous nucleation are operative in this emulsion polymerization system. Based on the experimental data and computer simulation results, the values of the free radical capture efficiency factors for monomer-swollen micelles (f ) and polymer particles (Fj) that serve as adjustable parameters in the kinetic modeling work are approximately 1(T and 10, respectively. The reason for such a difference in the free radical capture efficiency factors is not available yet. Table 4.2 summarizes some representative data regarding the absorption of free radicals by the monomer-swollen micelles and polymer particles obtained from the literature. [Pg.106]


See other pages where Methyl methacrylate free-radical emulsion is mentioned: [Pg.144]    [Pg.76]    [Pg.671]    [Pg.210]    [Pg.204]    [Pg.120]    [Pg.468]    [Pg.210]    [Pg.15]    [Pg.260]    [Pg.238]    [Pg.346]    [Pg.418]    [Pg.249]    [Pg.60]    [Pg.428]    [Pg.75]    [Pg.107]    [Pg.60]    [Pg.124]    [Pg.1241]    [Pg.431]    [Pg.125]    [Pg.190]    [Pg.224]    [Pg.290]    [Pg.438]    [Pg.60]    [Pg.80]    [Pg.101]    [Pg.113]   
See also in sourсe #XX -- [ Pg.256 ]




SEARCH



Emulsion free radicals

Emulsion methacrylate-methacrylic

Emulsion methyl methacrylate

Methyl free radical

Methyl methacrylate

Methyl radical

Radicals methyl radical

© 2024 chempedia.info