Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Emulsion methacrylate-methacrylic

Krajnc P, Leber N, Stefanec D, Kontrec S, and Podgomik A. Preparation and characterisation of poly(high internal phase emulsion) methacrylate monoliths and their application as separation media. J. Chromatogr. A 2005 1065 69-73. [Pg.62]

Uses. The a2obisnitriles have been used for bulk, solution, emulsion, and suspension polymeri2ation of all of the common vinyl monomers, including ethylene, styrene vinyl chloride, vinyl acetate, acrylonitrile, and methyl methacrylate. The polymeri2ations of unsaturated polyesters and copolymeri2ations of vinyl compounds also have been initiated by these compounds. [Pg.224]

Acrylics. Acetone is converted via the intermediate acetone cyanohydrin to the monomer methyl methacrylate (MMA) [80-62-6]. The MMA is polymerized to poly(methyl methacrylate) (PMMA) to make the familiar clear acryUc sheet. PMMA is also used in mol ding and extmsion powders. Hydrolysis of acetone cyanohydrin gives methacrylic acid (MAA), a monomer which goes direcdy into acryUc latexes, carboxylated styrene—butadiene polymers, or ethylene—MAA ionomers. As part of the methacrylic stmcture, acetone is found in the following major end use products acryUc sheet mol ding resins, impact modifiers and processing aids, acryUc film, ABS and polyester resin modifiers, surface coatings, acryUc lacquers, emulsion polymers, petroleum chemicals, and various copolymers (see METHACRYLIC ACID AND DERIVATIVES METHACRYLIC POLYMERS). [Pg.99]

Emulsion Polymerization. Emulsion polymerization is the most important industrial method for the preparation of acryhc polymers. The principal markets for aqueous dispersion polymers made by emulsion polymerization of acryhc esters are the paint, paper, adhesives, textile, floor pohsh, and leather industries, where they are used principally as coatings or binders. Copolymers of either ethyl acrylate or butyl acrylate with methyl methacrylate are most common. [Pg.168]

Hydroxyalkyl acrylates and polyols are acetoacetylated with diketene to give comonomers used in adhesives, polymers, and coatings, especially the new low solvent coatings, and for emulsion polymeri2ation. The most widely used compound is 2-acetoacetoxyethyl methacrylate (A ARM A) (152). [Pg.481]

A third source of initiator for emulsion polymerisation is hydroxyl radicals created by y-radiation of water. A review of radiation-induced emulsion polymerisation detailed efforts to use y-radiation to produce styrene, acrylonitrile, methyl methacrylate, and other similar polymers (60). The economics of y-radiation processes are claimed to compare favorably with conventional techniques although worldwide iadustrial appHcation of y-radiation processes has yet to occur. Use of y-radiation has been made for laboratory study because radical generation can be turned on and off quickly and at various rates (61). [Pg.26]

The vast majority of commercial apphcations of methacryhc acid and its esters stem from their facile free-radical polymerizabiUty (see Initiators, FREE-RADICAl). Solution, suspension, emulsion, and bulk polymerizations have been used to advantage. Although of much less commercial importance, anionic polymerizations of methacrylates have also been extensively studied. Strictiy anhydrous reaction conditions at low temperatures are required to yield high molecular weight polymers in anionic polymerization. Side reactions of the propagating anion at the ester carbonyl are difficult to avoid and lead to polymer branching and inactivation (38—44). [Pg.247]

The surfactants (qv) used in the emulsion polymerization of acryUc or methacrylic monomers are classified as anionic, cationic, or nonionic. Anionic surfactants, such as alkyl sulfates and alkylarene sulfonates and phosphates, or nonionic surfactants, such as alkyl or aryl polyoxyethylenes, are most common. Mixed anionic nonionic surfactant systems are also widely utilized. [Pg.267]

Numerous recipes have been pubUshed which describe the preparation of methacrylate homopolymer and copolymer dispersions (65,66). A typical process for the preparation of a 50% methyl methacrylate, 49% butyl acrylate, and 1% methacrylic acid terpolymer as an approximately 45% dispersion in water begins with the preparation of the monomer emulsion charge. [Pg.267]

MBS polymers are prepared by grafting methyl methacrylate and styrene onto a styrene—butadiene mbber in an emulsion process. The product is a two-phase polymer useful as an impact modifier for rigid poly(vinyl chloride). [Pg.269]

AH-acryHc (100%) latex emulsions are commonly recognized as the most durable paints for exterior use. Exterior grades are usuaHy copolymers of methyl methacrylate with butyl acrylate or 2-ethyIhexyl acrylate (see Acrylic ester polymers). Interior grades are based on methyl methacrylate copolymerized with butyl acrylate or ethyl acrylate. AcryHc latex emulsions are not commonly used in interior flat paints because these paints typicaHy do not require the kind of performance characteristics that acryHcs offer. However, for interior semigloss or gloss paints, aH-acryHc polymers and acryHc copolymers are used almost exclusively due to their exceUent gloss potential, adhesion characteristics, as weU as block and print resistance. [Pg.540]

There is extensive Hterature on PC blends with ABS, and blends of PC with related materials such as SAN, methacrylate-butadiene—styrene (MBS) emulsion-made core-shell mbber modifiers (297—299), and other impact modifiers. One report reviews some of these approaches and compares PC blends based on emulsion vs bulk ABS (229). In PC—ABS blends, no additional compatihili er is used, because of the near-miscihility of the SAN matrix of ABS and PC. [Pg.421]

Synthetic. The main types of elastomeric polymers commercially available in latex form from emulsion polymerization are butadiene—styrene, butadiene—acrylonitrile, and chloroprene (neoprene). There are also a number of specialty latices that contain polymers that are basically variations of the above polymers, eg, those to which a third monomer has been added to provide a polymer that performs a specific function. The most important of these are products that contain either a basic, eg, vinylpyridine, or an acidic monomer, eg, methacrylic acid. These latices are specifically designed for tire cord solutioning, papercoating, and carpet back-sizing. [Pg.253]

Vinyhdene chloride copolymerizes randomly with methyl acrylate and nearly so with other acrylates. Very severe composition drift occurs, however, in copolymerizations with vinyl chloride or methacrylates. Several methods have been developed to produce homogeneous copolymers regardless of the reactivity ratio (43). These methods are appHcable mainly to emulsion and suspension processes where adequate stirring can be maintained. Copolymerization rates of VDC with small amounts of a second monomer are normally lower than its rate of homopolymerization. The kinetics of the copolymerization of VDC and VC have been studied (45—48). [Pg.430]

The largest volume commercial derivatives of 1-butanol are -butyl acrylate [141-32-2] and methacrylate [97-88-1] (10). These are used principally ia emulsion polymers for latex paints, ia textile appHcations and ia impact modifiers for rigid poly(vinyl chloride). The consumption of / -butanol ia the United States for acrylate and methacrylate esters is expected to rise to 182,000—186,000 t by 1993 (10). [Pg.358]

Third Monomers. In order to achieve certain property improvements, nitrile mbber producers add a third monomer to the emulsion polymerization process. When methacrylic acid is added to the polymer stmcture, a carboxylated nitrile mbber with greatly enhanced abrasion properties is achieved (9). Carboxylated nitrile mbber carries the ASTM designation of XNBR. Cross-linking monomers, eg, divinylbenzene or ethylene glycol dimethacrylate, produce precross-linked mbbers with low nerve and die swell. To avoid extraction losses of antioxidant as a result of contact with fluids duriag service, grades of NBR are available that have utilized a special third monomer that contains an antioxidant moiety (10). FiaaHy, terpolymers prepared from 1,3-butadiene, acrylonitrile, and isoprene are also commercially available. [Pg.522]

An example of the first type is the emulsion stabiliser as exemplified by sodium oleyl sulphate, cetyl pyridinium chloride and poly(ethylene oxide) derivatives. For a number of applications it is desirable that the latex be thickened before use, in which case thickening agents such as water-soluble cellulose ethers or certain alginates or methacrylates may be employed. Antifoams such as silicone oils are occasionally required. [Pg.355]

Poly(acrylic acid) is insoluble in its monomer but soluble in water. It does not become thermoplastic when heated. The sodium and ammonium salts have been used as emulsion-thickening agents, in particular for rubber latex. The polymer of methacrylic acid (Figure 15.13 (VI)) is similar in properties. [Pg.423]

It may also be possible to crosslink the acrylic PSA with the help of multifunctional acrylates or methacrylates [87], These monomers can simply be copolymerized with the balance of the other monomers to form a covalently crosslinked network in one step. Since the resulting polymer is no longer soluble, this typ)e of crosslinking is typically limited to bulk reactions carried out as an adhesive coating directly on the article or in emulsion polymerizations where the crosslinked particles can be dried to a PSA film. [Pg.498]

The free radical initiators are more suitable for the monomers having electron-withdrawing substituents directed to the ethylene nucleus. The monomers having electron-supplying groups can be polymerized better with the ionic initiators. The water solubility of the monomer is another important consideration. Highly water-soluble (relatively polar) monomers are not suitable for the emulsion polymerization process since most of the monomer polymerizes within the continuous medium, The detailed emulsion polymerization procedures for various monomers, including styrene [59-64], butadiene [61,63,64], vinyl acetate [62,64], vinyl chloride [62,64,65], alkyl acrylates [61-63,65], alkyl methacrylates [62,64], chloroprene [63], and isoprene [61,63] are available in the literature. [Pg.198]

Recently, Smigol et al. [75] extensively studied emulsifier-free emulsion polymerization of different monomers including styrene, methyl methacrylate, and glycidyl methacrylate in an aqueous medium by using potassium peroxydisulfate as the initiator. In this study. [Pg.200]

DSEP direct soapless emulsion polymerization, SSEC seeded soapless emulsion copolymerization, DDC direct dispersion copolymerization, TDSC two-stage dispersion copolymerization, ATES Allyl trietoxysilane, VTES vinyl trietoxysilane, DMAEM dimethylaminoethyl-methacrylate, CMS chloromethylstyrene, GA glutaraldehyde, AAc Acrylic acid Aam Acrylamide HEMA 2-hydroxyethylmethacrylate. [Pg.216]

In another study, uniform composite polymethyl-methacrylate/polystyrene (PMMA/PS) composite particles in the size range of 1-10 fim were prepared by the seeded emulsion polymerization of styrene [121]. The PMMA seed particles were initially prepared by the dispersion polymerization of MMA by using AIBN as the initiator. In this polymerization, poly(7V-vinyl pyrolli-done) and methyl tricaprylyl ammonium chloride were used as the stabilizer and the costabilizer, respectively, in the methanol medium. Seed particles were swollen with styrene monomer in a medium comprised of seed particles, styrene, water, poly(7V-vinyl pyrollidone), Polywet KX-3 and aeorosol MA emulsifiers, sodium bicarbonate, hydroquinone inhibitor, and azobis(2-methylbu-... [Pg.219]

This paper presents the physical mechanism and the structure of a comprehensive dynamic Emulsion Polymerization Model (EPM). EPM combines the theory of coagulative nucleation of homogeneously nucleated precursors with detailed species material and energy balances to calculate the time evolution of the concentration, size, and colloidal characteristics of latex particles, the monomer conversions, the copolymer composition, and molecular weight in an emulsion system. The capabilities of EPM are demonstrated by comparisons of its predictions with experimental data from the literature covering styrene and styrene/methyl methacrylate polymerizations. EPM can successfully simulate continuous and batch reactors over a wide range of initiator and added surfactant concentrations. [Pg.360]

The Emulsion Polymerization Model (EPM) described in this paper will be presented without a detailed discussion of the model equations due to space limitations. The complete set of equations has been presented in a formal publication (Richards, J. R. et al. J. AppI. Poly. Sci . in press). Model results will then be compared to experimental data for styrene and styrene-methyl methacrylate (MMA) copolymers published by various workers. [Pg.361]

Polymerizations conducted in nonaqueous media in which the polymer is insoluble also display the characteristics of emulsion polymerization. When either vinyl acetate or methyl methacrylate is polymerized in a poor solvent for the polymer, for example, the rate accelerates as the polymerization progresses. This acceleration, which has been called the gel effect,probably is associated with the precipitation of minute droplets of polymer highly swollen with monomer. These droplets may provide polymerization loci in which a single chain radical may be isolated from all others. A similar heterophase polymerization is observed even in the polymerization of the pure monomer in those cases in which the polymer is insoluble in its own monomer. Vinyl chloride, vinylidene chloride, acrylonitrile, and methacryloni-trile polymerize with precipitation of the polymer in a finely divided dispersion as rapidly as it is formed. The reaction rate increases as these polymer particles are generated. In the case of vinyl chloride ... [Pg.216]


See other pages where Emulsion methacrylate-methacrylic is mentioned: [Pg.13]    [Pg.171]    [Pg.388]    [Pg.259]    [Pg.266]    [Pg.268]    [Pg.269]    [Pg.270]    [Pg.210]    [Pg.312]    [Pg.539]    [Pg.15]    [Pg.198]    [Pg.219]    [Pg.222]    [Pg.508]    [Pg.521]    [Pg.618]    [Pg.823]    [Pg.93]    [Pg.506]    [Pg.777]   


SEARCH



Emulsion methyl methacrylate

Emulsion polymerization of methyl methacrylate

Methyl methacrylate emulsion polymerization

Methyl methacrylate free-radical emulsion

Polymerization butyl acrylate-methyl methacrylate batch emulsion

Radical Copolymerization of Methacrylic Acid with n-Butyl Acrylate in Emulsion (Continous Monomer Addition)

© 2024 chempedia.info