Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Major Monomers

Synthetic emulsion polymers account for approximately 70% of the U.S. consumption of acrylate monomers. Major end uses for these latex polymers are coatings (32%), textiles (17%), adhesives (7%), paper (5%), and floor poHshes (3%). The U.S. producers of acryflc copolymer emulsions include Rohm and Haas, Reichhold, National Starch, Union Carbide, Air Products, Unocal, B. F. Goodrich, and H. B. Fuller. [Pg.171]

In spite of this impressive list of characteristics the use of reactive acrylic adhesives has been limited to selected high-performance adhesive markets. Their growth otherwise, has been less rapid than expected (10). One of the principal reasons is due to the toxicity characteristics associated with methyl methacrylate and methacrylic acid monomers, major formulation constituents of "second-generation" acrylic adhesives, with regard to inhalation, ingestion and skin contact. Compositions containing large quantities of these monomers have been rejected on certain production lines such as automotive assembly. The low flash point and resultant flammability hazard have also been important contributors to the restricted use of modified acrylic adhesives (9 and 11). [Pg.729]

Polymerization process Monomers Major catalysts Reference... [Pg.413]

Acrylics. Acetone is converted via the intermediate acetone cyanohydrin to the monomer methyl methacrylate (MMA) [80-62-6]. The MMA is polymerized to poly(methyl methacrylate) (PMMA) to make the familiar clear acryUc sheet. PMMA is also used in mol ding and extmsion powders. Hydrolysis of acetone cyanohydrin gives methacrylic acid (MAA), a monomer which goes direcdy into acryUc latexes, carboxylated styrene—butadiene polymers, or ethylene—MAA ionomers. As part of the methacrylic stmcture, acetone is found in the following major end use products acryUc sheet mol ding resins, impact modifiers and processing aids, acryUc film, ABS and polyester resin modifiers, surface coatings, acryUc lacquers, emulsion polymers, petroleum chemicals, and various copolymers (see METHACRYLIC ACID AND DERIVATIVES METHACRYLIC POLYMERS). [Pg.99]

The major use of vinylpyrrohdinone is as a monomer in manufacture of poly(vinylpyrrohdinone) (PVP) homopolymer and in various copolymers, where it frequendy imparts hydrophilic properties. When PVP was first produced, its principal use was as a blood plasma substitute and extender, a use no longer sanctioned. These polymers are used in pharmaceutical and cosmetic appHcations, soft contact lenses, and viscosity index improvers. The monomer serves as a component in radiation-cured polymer compositions, serving as a reactive diluent that reduces viscosity and increases cross-linking rates (see... [Pg.114]

The vast majority of all commercially prepared acryUc polymers are copolymers of an acryUc ester monomer with one or more different monomers. Copolymerization gready increases the range of available polymer properties and has led to the development of many different resins suitable for a broad variety of appHcations. Several review articles are available (84,85). [Pg.166]

Solution polymers are the second most important use for acryflc monomers, accounting for about 12% of the monomer consumption. The major end use for these polymers is in coatings, primarily industrial finishes. Other uses of acryflc monomers include graft copolymers, suspension polymers, and radiation curable inks and coatings. [Pg.171]

Since adipic acid has been produced in commercial quantities for almost 50 years, it is not surprising that many variations and improvements have been made to the basic cyclohexane process. In general, however, the commercially important processes stiU employ two major reaction stages. The first reaction stage is the production of the intermediates cyclohexanone [108-94-1] and cyclohexanol [108-93-0], usuaHy abbreviated as KA, KA oil, ol-one, or anone-anol. The KA (ketone, alcohol), after separation from unreacted cyclohexane (which is recycled) and reaction by-products, is then converted to adipic acid by oxidation with nitric acid. An important alternative to this use of KA is its use as an intermediate in the manufacture of caprolactam, the monomer for production of nylon-6 [25038-54-4]. The latter use of KA predominates by a substantial margin on a worldwide basis, but not in the United States. [Pg.240]

Chlorine cannot be stored economically or moved long distances. International movements of bulk chlorine are more or less limited to movements between Canada and the United States. In 1987, chlorine moved in the form of derivatives was 3.3 million metric tons or approximately 10% of total consumption (3). Exports of ethylene dichloride, vinyl chloride monomer, poly(vinyl chloride), propylene oxide, and chlorinated solvents comprise the majority of world chlorine movement. Countries or areas with a chlorine surplus exported in the form of derivatives include Western Europe, Bra2il, USA, Saudi Arabia, and Canada. Countries with a chlorine deficit are Taiwan, Korea, Indonesia, Vene2uela, South Africa, Thailand and Japan (3). [Pg.478]

The principal monomer is acrylamide [79-06-17, where R = H and R = NH2, made by the hydrolysis of acrylonitrile. The homopolymer [9003-05-8] of acrylamide, which in theory has no electrical charge, has some use as a flocculant however, the majority of acrylamide-based flocculants are copolymers with acryHc monomers containing charged functional groups, such as those shown in Figure 1, or polymers containing functional groups formed by modification of acrylamide homopolymers or copolymers (Fig. 2). The chemistry of polyacrylamides has been reviewed by several authors (18—20) (see... [Pg.32]

For methylene diphenyl diisocyanate (MDI), the initial reaction involves the condensation of aniline [62-53-3] (21) with formaldehyde [50-00-0] to yield a mixture of oligomeric amines (22, where n = 1, 2, 3...). For toluene diisocyanate, amine monomers are prepared by the nitration (qv) of toluene [108-88-3] and subsequent hydrogenation (see Amines byreduction). These materials are converted to the isocyanate, in the majority of the commercial aromatic isocyanate phosgenation processes, using a two-step approach. [Pg.452]

The properties of polymers formed by the step growth esterification (1) of glycols and dibasic acids can be manipulated widely by the choice of coreactant raw materials (Table 1) (2). The reactivity fundamental to the majority of commercial resins is derived from maleic anhydride [108-31-6] (MAN) as the unsaturated component in the polymer, and styrene as the coreactant monomer. Propylene glycol [57-55-6] (PG) is the principal glycol used in most compositions, and (i9f2v (9)-phthahc anhydride (PA) is the principal dibasic acid incorporated to moderate the reactivity and performance of the final resins. [Pg.313]

Butyl and Halobutyl Rubber. Butyl mbber is made by the polymerization of isobutylene a small amount of isoprene is added to provide sites for curing. It is designated HR because of these monomers. Halogenation of butyl mbber with bromine or chlorine increases the reaction rate for vulcanization and laminates or blends of halobutyl are feasible for production of mbber goods. It is estimated that of the - 100 million kg of butyl (UR) and halobutyl (HIIR) mbber in North America, over 90% is used in tire apphcations. The halogenated polymer is used in the innerliner of tubeless tires. Butyl mbber is used to make innertubes and curing bladders. The two major suppHers of butyl and halobutyl polymers in North America are Exxon and Bayer (see ELASTOLffiRS,SYNTHETIC-BUTYLrubber). [Pg.232]

Miscellaneous Copolymers. VP has been employed as a termonomer with various acryUc monomer—monomer combinations, especially to afford resins usehil as hair fixatives. Because of major differences in reactivity, VP can be copolymerized with alpha-olefins, but the products are actually PVP grafted with olefin or olefin oligomers (151,152). Likewise styrene can be polymerized in the presence of PVP and the resulting dispersion is unusually stable, suggesting that this added resistance to separation is caused by some grafting of styrene onto PVP (153). The Hterature contains innumerable references to other copolymers but at present (ca 1997), those reviewed in this article are the only ones known to have commercial significance. [Pg.534]

Two kinds of monomers are present in acryUc elastomers backbone monomers and cure-site monomers. Backbone monomers are acryUc esters that constitute the majority of the polymer chain (up to 99%), and determine the physical and chemical properties of the polymer and the performance of the vulcanizates. Cure-site monomers simultaneously present a double bond available for polymerization with acrylates and a moiety reactive with specific compounds in order to faciUtate the vulcanization process. [Pg.474]

A polymerization process involving a monomer, an organic peroxide initiator and an organic solvent underwent an energetic runaway reaction. All the contents in the polymerization reactor were lost. The emergency relief system prevented major damage to the equipment. [Pg.112]

Figure 9.10 Schematic diagrams illustrating the complex between DNA (orange) and one monomer of the homeodomain. The recognition helix (red) binds in the major groove of DNA and provides the sequence-specific interactions with bases in the DNA. The N-terminus (green) binds in the minor groove on the opposite side of the DNA molecule and arginine side chains make nonspecific interactions with the phosphate groups of the DNA. (Adapted from C.R. Kissinger et al Cell 63 579-590, 1990.)... Figure 9.10 Schematic diagrams illustrating the complex between DNA (orange) and one monomer of the homeodomain. The recognition helix (red) binds in the major groove of DNA and provides the sequence-specific interactions with bases in the DNA. The N-terminus (green) binds in the minor groove on the opposite side of the DNA molecule and arginine side chains make nonspecific interactions with the phosphate groups of the DNA. (Adapted from C.R. Kissinger et al Cell 63 579-590, 1990.)...
In these cases the monomer is converted into polymer, and no side products are formed. This approach is used with the major thermoplastics materials (Figure 2.2) such as polyethylene (a polymer of ethylene), polystyrene (a polymer of styrene) and poly(methyl methacrylate) (a polymer of methyl methacrylate). [Pg.20]

The major method for preparing the monomer commercially since the early 1960s has been the so-called balanced process from ethylene. In the first stage of the reaction, 1,2-dichloroethane is prepared by reacting ethylene with chlorine in either the vapour or the liquid phase Figure 12.2). In a typical liquid phase... [Pg.313]

As with other major plastics materials, there is at present little use of the lUPAC systematic nomenclature, which is based on the nature of the repeating unit rather than the monomer used. The following names may, however, be noted ... [Pg.399]


See other pages where Major Monomers is mentioned: [Pg.326]    [Pg.303]    [Pg.66]    [Pg.186]    [Pg.497]    [Pg.326]    [Pg.303]    [Pg.66]    [Pg.186]    [Pg.497]    [Pg.2597]    [Pg.116]    [Pg.176]    [Pg.477]    [Pg.278]    [Pg.267]    [Pg.401]    [Pg.68]    [Pg.516]    [Pg.105]    [Pg.24]    [Pg.172]    [Pg.186]    [Pg.192]    [Pg.194]    [Pg.195]    [Pg.196]    [Pg.198]    [Pg.198]    [Pg.319]    [Pg.604]    [Pg.311]    [Pg.734]   
See also in sourсe #XX -- [ Pg.23 ]




SEARCH



© 2024 chempedia.info