Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Method viscometer

While the canal viscometer provides absolute viscosities and the effect of the substrate drag can be analyzed theoretically, the shear rate is not constant and the measurement cannot be made at a single film pressure as a gradient is required. Another basic method, more advantageous in these respects, is one that goes back to Plateau... [Pg.119]

The concentric cylinder viscometer described in Sec. 2.3, as well as numerous other possible instruments, can also be used to measure solution viscosity. The apparatus shown in Fig. 9.6 and its variations are the most widely used for this purpose, however. One limitation of this method is the fact that the velocity gradient is not constant, but varies with r in this type of instrument, as noted in connection with Eq. (9.26). Since we are not considering shear-dependent viscosity in this chapter, we shall ignore this limitation. [Pg.604]

Since viscometer drainage times are typically on the order of a few hundred seconds, intrinsic viscosity experiments provide a rapid method for evaluating the molecular weight of a polymer. A limitation of the method is that the Mark-Houwink coefficients must be established for the particular system under consideration by calibration with samples of known molecular weight. The speed with which intrinsic viscosity determinations can be made offsets the need for prior calibration, especially when a particular polymer is going to be characterized routinely by this method. [Pg.608]

Solution Polymers. Acryflc solution polymers are usually characterized by their composition, solids content, viscosity, molecular weight, glass-transition temperature, and solvent. The compositions of acryflc polymers are most readily determined by physicochemical methods such as spectroscopy, pyrolytic gas—liquid chromatography, and refractive index measurements (97,158). The solids content of acryflc polymers is determined by dilution followed by solvent evaporation to constant weight. Viscosities are most conveniently determined with a Brookfield viscometer, molecular weight by intrinsic viscosity (158), and glass-transition temperature by calorimetry. [Pg.171]

Slurry Viscosity. Viscosities of magnesium hydroxide slurries are determined by the Brookfield Viscometer in which viscosity is measured using various combinations of spindles and spindle speeds, or other common methods of viscometry. Viscosity decreases with increasing rate of shear. Fluids, such as magnesium hydroxide slurry, that exhibit this type of rheological behavior are termed pseudoplastic. The viscosities obtained can be correlated with product or process parameters. Details of viscosity deterrnination for slurries are well covered in the Hterature (85,86). [Pg.350]

Capillary Viscometers. Capillary flow measurement is a popular method for measuring viscosity (21,145,146) it is also the oldest. A Hquid drains or is forced through a fine-bore tube, and the viscosity is determined from the measured flow, appHed pressure, and tube dimensions. The basic equation is the Hagen-Poiseuike expression (eq. 17), where Tj is the viscosity, r the radius of the capillary, /S.p the pressure drop through the capillary, IV the volume of hquid that flows in time /, and U the length of the capillary. [Pg.180]

The original Ostwald viscometer has been modified in many ways, and a number of different versions are on the market (Table 4) (21). Most are available with a wide choice of capillary diameters and therefore a number of viscosity ranges. A number of viscometers are described in ASTM D445, which also Hsts detailed recommendations on dimensions and methods of use. [Pg.180]

AH glass capillary viscometers should be caUbrated carefully (21). The standard method is to determine the efflux time of distilled water at 20°C. Unfortunately, because of its low viscosity, water can be used only to standardize small capillary instmments. However, a caUbrated viscometer can be used to determine the viscosity of a higher viscosity Hquid, such as a mineral oil. This oil can then be used to caUbrate a viscometer with a larger capillary. Another method is to caUbrate directly with two or more certified standard oils differing in viscosity by a factor of approximately five. Such oils are useful for cahbrating virtually all types of viscometers. Because viscosity is temperature-dependent, particularly in the case of standard oils, temperature control must be extremely good for accurate caUbration. [Pg.181]

Piston Cylinder (Extrusion). Pressure-driven piston cylinder capillary viscometers, ie, extmsion rheometers (Fig. 25), are used primarily to measure the melt viscosity of polymers and other viscous materials (21,47,49,50). A reservoir is connected to a capillary tube, and molten polymer or another material is extmded through the capillary by means of a piston to which a constant force is appHed. Viscosity can be determined from the volumetric flow rate and the pressure drop along the capillary. The basic method and test conditions for a number of thermoplastics are described in ASTM D1238. Melt viscoelasticity can influence the results (160). [Pg.182]

The equations and methods for determining viscosity vary greatly with the type of instmment, but in many cases calculations may be greatly simplified by calibration of the viscometer with a standard fluid, the viscosity of which is known for the conditions involved. General procedures for calibration measurement are given in ASTM D2196. The constant thus obtained is used with stress and shear rate terms to determine viscosity by equation 25, where the stress term may be torque, load, or deflection, and the shear rate may be in rpm, revolutions per second (rps), or s F... [Pg.184]

Viscosity can also be determined from the rising rate of an air bubble through a Hquid. This simple technique is widely used for routine viscosity measurements of Newtonian fluids. A bubble tube viscometer consists of a glass tube of a certain size to which Hquid is added until a small air space remains at the top. The tube is then capped. When it is inverted, the air bubble rises through the Hquid. The rise time in seconds may be taken as a measure of viscosity, or an approximate viscosity in mm /s may be calculated from it. In an older method that is commonly used, the rate of rise is matched to that of a member of a series of standards, eg, with that of the Gardner-Holdt bubble tubes. Unfortunately, this technique employs a nonlinear scale of letter designations and may be difficult to interpret. [Pg.190]

Chocolate does not behave as a tme Hquid owing to the presence of cocoa particles and the viscosity control of chocolate is quite compHcated. This non-Newtonian behavior has been described (28). When the square root of the rate of shear is plotted against the square root of shear stress for chocolate, a straight line is produced. With this Casson relationship method (29) two values are obtained, Casson viscosity and Casson yield value, which describe the flow of chocolate. The chocolate industry was slow in adopting the Casson relationship but this method now prevails over the simpler MacMichael viscometer. Instmments such as the Carri-Med Rheometer and the Brookfield and Haake Viscometers are now replacing the MacMichael. [Pg.95]

All three methods discussed above appear to provide equally high quality ionic liquid viscosity data. However, the rotational viscometer could potentially provide additional information concerning the Newtonian behavior of the ionic liquids. The capillary method has been by far the most commonly used to generate the ionic liquid viscosity data found in the literature. This is probably due to its low cost and relative ease of use. [Pg.59]

I = complex impedance, B = conductivity bridge, C = capillary viscometer, P = pycnometer or dilatometer, V = volumetric glassware, I = instrument, U = method unknown... [Pg.62]

If it is known that a particular form of relation, such as the power-law model, is applicable, it is not necessary to maintain a constant shear rate. Thus, for instance, a capillary tube viscometer can be used for determination of the values of the two parameters in the model. In this case it is usually possible to allow for the effects of wall-slip by making measurements with tubes covering a range of bores and extrapolating the results to a tube of infinite diameter. Details of the method are given by Farooqi and Richardson. 21 ... [Pg.119]

The surface viscosity varies significantly along the isotherm and across monolayer phase boundaries. Addition of subphase metal ions increases the surface viscosity drastically, as was recently reinvestigated [36]. Recently, microscopy methods have been used to image velocity profiles of different monolayer phases flowing through a narrow channel, such as used in the canal viscometer [37], The two main methods used to study monolayer viscosity are the canal viscometer and the oscillating disc method [8,9]. [Pg.65]

A body of a cylindrical or spherical shape is suspended in a melt and oscillating rotational motion is fed to it. A schematic drawing of a viscometer is shown in Fig. 23. This initial oscillation is gradually attenuated by the viscosity resistance. The viscosity is obtained as an absolute value from the logarithmic decrement of the swings of the pendulum s oscillation. Since the sample melt can be completely closed in this method, this is the best method for a melt of high temperature. [Pg.168]

Torklep and 0ye measured the viscosity of NaCl by this method, which has been adopted as the standard (see Section 1.2). The accuracy of the working equation is better than 0.1% for the cylinder geometry, hquid densities, and liquid viscosities used by these authors. They claim that the remarkable theoretical analysis of oscillating-body viscometers given by Kestin and Newell supersedes all former, less accurate theories. All the results were once suspect owing to possible solid impurities in the liquid. [Pg.168]

The logarithmic decrement of the oscillations of a pendulum consisting of a crucible containing a test liquid is measured by the oscillating cup method. A schematic drawing of the oscillating cup (vessel) viscometer is shown in Fig. 24. [Pg.169]

Rotating cylinder viscometers consist of two concentric cylinders, corresponding to the bob and the crucible, one cylinder of which is rotated at a constant speed. The viscosity is determined from measurement of the torque generated. A schematic drawing is shown in Fig. 25. This method is most popular for measuring viscosity at high temperatures and is suitable for melts with high viscosity. The viscosity is calculated from... [Pg.170]

Bamford and Dewar have adapted the latter method to the deduction of values for r, and hence to the determination of the individual rate constants kp and kt. They chose to observe the rate of polymerization by measuring the increase in viscosity with time, using for this purpose a specially designed reaction cell equipped with a viscometer. Having established by separate experiments the relation-... [Pg.150]

The most direct method for calculating My(V) across the chromatogram would be to use an on-line viscometer to measure [ri](V) and then to calculate My(V) from... [Pg.132]

The q(T) can be independently measured by a viscometer and the value of y is determined by the PCS measurement at a certain temperature (typically 21 22 °C). Under the condition that the hydrodynamic diameter of the probe molecule is constant in the temperature range examined, we can obtain the temperature of the confocal area. It is worth noting that the present method estimates average temperature inside the confocal volume of the microscopic system because ECS provides the average value of the translational diffusion velocity over multiple fluorescent molecules passing through the sampling area. [Pg.141]

Historically, viscosity measurements have been the single most important method to characterize fluids in petroleum-producing applications. Whereas the ability to measure a fluid s resistance to flow has been available in the laboratory for a long time, a need to measure the fluid properties at the well site has prompted the development of more portable and less sophisticated viscosity-measuring devices [1395]. These instruments must be durable and simple enough to be used by persons with a wide range of technical skills. As a result, the Marsh funnel and the Fann concentric cylinder, both variable-speed viscometers, have found wide use. In some instances, the Brookfield viscometer has also been used. [Pg.238]

Saybolt Universal Seconds (SUS) are used to measure viscosity. The efflux time is the SUS required for 60 mL of a petroleum product to flow through the calibrated orifice of a Saybolt Universal viscometer, under carefully controlled temperature and as prescribed by test method ASTM D 88. This method has largely been replaced by the kinematic viscosity method. SUS is also called the SSU number (Seconds Saybolt Universal) or SSF number (Saybolt Seconds Furol). [Pg.751]

This expression contains four quantities n, D, v, and Cx. Since n is normally known for a given electrode reaction, and v can be experimentally determined with a viscometer, the slope permits one to determine the concentration of the diffusing ion, CrJ0, if its diffusivity, D is known. Conversely, one may use the slope to determine the diffusivity, D, if the bulk concentration, Cx can be measured by the other analytical methods. [Pg.193]

Assays. Nitrogen assays to determine 1-amidoethylene unit content were done by Kjeldahl method. Limiting viscosity numbers were determined from 4 or more viscosity measurements made on a Cannon-Fenske capillary viscometer at 30°C. Data was extrapolated to 0 g/dL polymer concentration using the Huggins equation(44) for nonionic polymers and the Fuoss equation(45) for polyelectrolytes. Equipment. Viscosities were measured using Cannon-Fenske capillary viscometers and a Brookfield LV Microvis, cone and plate viscometer with a CP-40, 0.8° cone. Capillary viscometers received 10 mL of a sample for testing while the cone and plate viscometer received 0.50 mL. [Pg.185]


See other pages where Method viscometer is mentioned: [Pg.120]    [Pg.162]    [Pg.276]    [Pg.207]    [Pg.296]    [Pg.270]    [Pg.171]    [Pg.188]    [Pg.527]    [Pg.258]    [Pg.56]    [Pg.57]    [Pg.169]    [Pg.449]    [Pg.872]    [Pg.639]    [Pg.788]    [Pg.281]    [Pg.282]   
See also in sourсe #XX -- [ Pg.227 ]




SEARCH



Viscometer

© 2024 chempedia.info