Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Method most descriptive compound

Hudson et al. [26] describes a method called the Most Descriptive Compound (MDC) method for selecting representative subsets and a sphere exclusion method for selecting sets of compounds that cover the available property space. The MDC method aims to select subsets that most effectively represent the compounds in the original collection. It operates by calculating a vector / of N elements where there are N compounds. For each compound, the other compounds are ranked in order of distance to it. The reciprocal of the rank of each compound n is then stored in vector position / . The process... [Pg.353]

Hudson et al. (67) describe two parameter-based methods for compound selection. The most descriptive compound (MDC) method is aimed at selecting compounds that represent the population as a whole. An information vector is accumulated from the ranked Euclidean distance of each compound in the data set to all others. The most descriptive compound is that with the largest information, which equates to the compound with the smallest overall distance to all other compounds. The next compound is chosen to give the greatest additional information and so on. The sphere-exclusion method used attempts to select compounds that most effectively cover the property space. A compound is selected, say the MDC, and all compounds are removed that are closer to it than a user-defined radius. The... [Pg.207]

This handbook is an encyclopedic treatment of chemical elements and their most important compounds intended for professionals and students in many areas of chemistry throughout the manufacturing, academic, and consulting communities. Chemicals are presented in alphabetical order in a descriptive format highlighting pertinent information on physical, chemical, and thermodynamic properties of chemicals, methods of preparation, industrial applications, chemical analyses, and toxic and hazardous properties. Synonyms, CAS Registry Numbers, brief history of discovery and natural occurrence are provided for many entries. The objective is to provide readers a single source for instant information about important aspects each substance. In this sense it should serve as a combination handbook and encyclopedia. [Pg.1089]

Due to the enormous number of possible and known alloys and intermetallic compounds, a full description of all preparative methods is, of course, impossible. It is even less feasible to cite all the most important compounds separately. This section therefore contains only a selection of tjqjical laboratory procedures these are examples which may be adapted to other cases, even if the latter are unrelated. Only a few individual preparations are given in detail. [Pg.1771]

Electron correlation is often very important as well. The presence of multiple bonding interactions, such as pi back bonding, makes coordination compounds more sensitive to correlation than organic compounds. In some cases, the HF wave function does not provide even a qualitatively correct description of the compound. If the weight of the reference determinant in a single-reference CISD calculation is less than about 0.9, then the HF wave function is not qualitatively correct. In such cases, multiple-determinant, MSCSF, CASPT2, or MRCI calculations tend to be the most efficient methods. The alternative is... [Pg.288]

The development of precise and reproducible methods of sensory analysis is prerequisite to the determination of what causes flavor, or the study of flavor chemistry. Knowing what chemical compounds are responsible for flavor allows the development of analytical techniques using chemistry rather than human subjects to characterize flavor (38,39). Routine analysis in most food production for the quaUty control of flavor is rare (40). Once standards for each flavor quaUty have been synthesized or isolated, they can also be used to train people to do more rigorous descriptive analyses. [Pg.3]

Inorganic Compounds. Inorganic selenium compounds are similar to those of sulfur and tellurium. The most important inorganic compounds are the selenides, haUdes, oxides, and oxyacids. Selenium oxidation states are —2, 0, +1, +2, +4, and +6. Detailed descriptions of the compounds, techniques, and methods of preparation, and references to original work are available (1—3,5,6—10, 51—54). Some important physical properties of inorganic selenium compounds are Hsted in Table 3. [Pg.331]

The nomenclature of boron hydride derivatives has been somewhat confusing and many inconsistencies exist in the Hterature. The stmctures of some reported boron hydride clusters are so compHcated that only a stmctural drawing or graph, often accompanied by explanatory text, is used to describe them. Traditional nomenclature systems often can be used to describe compounds unambiguously, but the resulting descriptions may be so long and unwieldy that they are of Htde use. The lUPAC (7) and the Chemical Abstract Service (8) have made recommendations, and nomenclature methods have now been developed that can adequately handle nearly all clusters compounds however, these methods have yet to be widely adopted. Eor the most part, nomenclature used in the original Hterature is retained herein. [Pg.227]

Most chemicals used in the procedure will appear in the index. Thus, there will generally be entries for all starting materials, reagents, intermediates, important by-products, and final products. Most products shown in the Tables in the discus.sion sections of this volume are included unless the compounds are quite similar in which case a general descriptive name was entered. Chemicals generally nut indexed included coiimion solvents, standard inorganic acids and bases, reactants shown in the Tables, and compounds cited in the discussion section in connection with other methods of preparation. [Pg.245]

For a detailed description of spectral map analysis (SMA), the reader is referred to Section 31.3.5. The method has been designed specifically for the study of drug-receptor interactions [37,44]. The interpretation of the resulting spectral map is different from that of the usual principal components biplot. The former is symmetric with respect to rows and columns, while the latter is not. In particular, the spectral map displays interactions between compounds and receptors. It shows which compounds are most specific for which receptors (or tests) and vice versa. This property will be illustrated by means of an analysis of data reporting on the binding affinities of various opioid analgesics to various opioid receptors [45,46]. In contrast with the previous approach, this application is not based on extra-thermodynamic properties, but is derived entirely from biological activity spectra. [Pg.402]

Sulfonylurea herbicides are generally applied to crops as an early post-emergent herbicide. Crops that are tolerant to these herbicides quickly metabolize them to innocuous compounds. At maturity, residues of the parent compound in food and feed commodities are nondetectable. Metabolites are not considered to be of concern, and their levels are usually nondetectable also. For this reason, the residue definition only includes the parent compound. Tolerances [or maximum residue limits (MRLs)] are based on the LOQ of the method submitted for enforcement purposes and usually range from 0.01 to 0.05 mg kg (ppm) for food items and up to O.lmgkg" for feed items. There is no practical need for residue methods for animal tissues or animal-derived products such as milk, meat, and eggs. Sulfonylurea herbicides are not found in animal feed items, as mentioned above. Furthermore, sulfonylurea herbicides intentionally dosed to rats and goats are mostly excreted in the urine and feces, and the traces that are absorbed are rapidly metabolized to nontoxic compounds. For this reason, no descriptions of methods for animal-derived matrices are given here. [Pg.405]

Phenolic antioxidants in rubber extracts were determined indirectly photometrically after reaction with Fe(III) salts which form a red Fe(II)-dipyridyl compound. The method was applicable to Vulkanox BKF and Vulkanox KB [52]. Similarly, aromatic amines (Vulkanox PBN, 4020, DDA, 4010 NA) were determined photometrically after coupling with Echtrotsalz GG (4-nitrobenzdiazonium fluoroborate). For qualitative analysis of vulcanisation accelerators in extracts of rubbers and elastomers colour reactions with dithio-carbamates (for Vulkacit P, ZP, L, LDA, LDB, WL), thiuram derivatives (for Vulkacit I), zinc 2-mercaptobenzthiazol (for Vulkacit ZM, DM, F, AZ, CZ, MOZ, DZ) and hexamethylene tetramine (for Vulkacit H30), were mentioned as well as PC and TLC analyses (according to DIN 53622) followed by IR identification [52]. 8-Hydroquinoline extraction of interference ions and alizarin-La3+ complexation were utilised for the spectrophotometric determination of fluorine in silica used as an antistatic agent in PE [74], Also Polygard (trisnonylphenylphosphite) in styrene-butadienes has been determined by colorimetric methods [75,76], Most procedures are fairly dated for more detailed descriptions see references [25,42,44],... [Pg.311]

The answers are 31-b, 32-a, 33-d (Katzung, pp 4—7.) The absorption, distribution, and elimination of drugs require that they cross various cellular membranes The descriptions that are given in the question define the various transport mechanisms. The most common method by which ionic compounds of low molecular weight (100 to 200) enter cells is via membrane channels. The degree to which such filtration occurs varies from cell type to cell type because their pore sizes differ. [Pg.53]

The references which we obtain in a successful search are of various kinds. The main work of Richter , as already mentioned, first refers us to Beilstein s Handbuch der organischen Chemie, which may now be briefly described. The third edition of this work, in four volumes and as many supplementary volumes, gives a brief description of all pure organic compounds prepared up to July 1, 1899, with their physical constants, methods important reactions, and all references to the literature. [Pg.421]


See other pages where Method most descriptive compound is mentioned: [Pg.262]    [Pg.262]    [Pg.476]    [Pg.90]    [Pg.23]    [Pg.176]    [Pg.2]    [Pg.1433]    [Pg.3]    [Pg.9]    [Pg.80]    [Pg.215]    [Pg.182]    [Pg.332]    [Pg.465]    [Pg.162]    [Pg.408]    [Pg.585]    [Pg.208]    [Pg.241]    [Pg.306]    [Pg.307]    [Pg.459]    [Pg.138]    [Pg.70]    [Pg.193]    [Pg.408]    [Pg.181]    [Pg.292]    [Pg.155]    [Pg.4]    [Pg.3]    [Pg.11]    [Pg.380]    [Pg.429]    [Pg.848]   
See also in sourсe #XX -- [ Pg.353 ]




SEARCH



Compounding methods

Descriptive method

Method compound

Method descriptions

Most descriptive compound MDC) method

© 2024 chempedia.info