Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Methanol zeolites

Lacroix, C., Deluzarche, A., and Kiennemann, A. (1984) Promotion role of some metals (Cu, Ag) in the side chain alkylation of toluene with methanol. Zeolites, 4,109-111. [Pg.531]

The nature of the methanol-zeolite interaction has been shown to be sensitive to a number of parameters and as such has proved to be a good benchmark for judging the reliability of quantum chemical methods. Not only are there a number of possible modes whereby one and two molecules interact with an acidic site (245), the barrier to proton transfer is small and sensitive to calculation details. Recent first-principles simulations (236-238) suggest that the nature of adsorbed methanol may be sensitive to the topology of the zeolite pore. The activation and reaction of methane, ethane, and isobutane have been characterized by using reliable methods and models, and realistic activation energies for catalytic reactions have been obtained. [Pg.106]

Table 6 Experimental and Calculated Characteristics of Methanol-Zeolite Adsorption Complexes... Table 6 Experimental and Calculated Characteristics of Methanol-Zeolite Adsorption Complexes...
O-methylation with methanol, zeolite-catalyzed hydroxymethylation (see Section... [Pg.9]

The best sub-atmospheric refrigerant is water. Unfortunately it is not strongly adsorbed by carbons, but refrigerators and heat pumps based on water - zeolite pairs have been built and tested in research laboratories. Methanol is adsorbed well by carbons and a solar refrigerator based on a carbon - methanol pair was marketed by Brissoneau et Lotz Marine in France. Methanol is environmentally friendly, but deeomposes at temperatures around 150°C and so camiot be used for very high temperature cycles. [Pg.319]

Vetyselecdve reducdon of nltroalkenes into the corresponding nitroalkanes is achieved using NaCNBH- in the presence of the zeolite H-ZSM 5 in methanol fEq. 3.48. ... [Pg.44]

Methanol conversion to hydrocarbons over various zeolites (370X, 1 atm, 1 LHSV)... [Pg.163]

The Tg-based octa-anion TglO lg can be seen as a model for the well-known D4R found in inorganic structures such as zeolite A. Synthesis of TglO Jg can be achieved more readily than many other POSS species and it can be obtained in quantitative yield from the reaction of a tetra-alkoxysilane with H2O (10 equiv./Si) in the presence of Me4NOH (1 equiv./Si) in methanol at room temperature for 1 day (Figure Alcoholysis of T8[OSiMe2H]g causes terminal Si-O bond... [Pg.48]

At the low-molecular-weight end of the spectrum, a process newly commercialized by Mobil for converting methanol into gasoline has significantly expanded opportunities in C-1 chemistry— the upgrading of one-carbon molectrles to mrrlticarbon products. The process involves the use of ZSM-5, a shape-selective zeolite catalyst. (See "Zeolite and Shape-Selective Catalysts" in Chapter 9.)... [Pg.102]

FIGURE 9.2 This high-resolution electron micrograph shows the unique pore structure of the ZSM-5 zeolite catalyst. Molecules such as methanol and hydrocarbons can he catalytically converted within the pores to valuable fuels and lubricant products. Courtesy, Mobil Research and Development Corporation. [Pg.170]

Shape-selective zeolites can also be used to discriminate among potential products of a chemical reaction, a property called product shape selectivity. In this case, the product produced is the one capable of escaping from the zeolite pore structure. This is the basis of the selective conversion of methanol to gasoline over... [Pg.171]

The final step in the methanol-to-gasoline process can be carried out in an adiabatic, fixed-bed reactor using a zeolite catalyst. A product mixture similar to ordinary gasoline is obtained. As is typical of polymerizations, a pure reactant is converted to a complex mixture of products. [Pg.349]

Since their development in 1974 ZSM-5 zeolites have had considerable commercial success. ZSM-5 has a 10-membered ring-pore aperture of 0.55 nm (hence the 5 in ZSM-5), which is an ideal dimension for carrying out selective transformations on small aromatic substrates. Being the feedstock for PET, / -xylene is the most useful of the xylene isomers. The Bronsted acid form of ZSM-5, H-ZSM-5, is used to produce p-xylene selectively through toluene alkylation with methanol, xylene isomerization and toluene disproportionation (Figure 4.4). This is an example of a product selective reaction in which the reactant (toluene) is small enough to enter the pore but some of the initial products formed (o and w-xylene) are too large to diffuse rapidly out of the pore. /7-Xylene can, however. [Pg.95]

The zeolite fixed into the reactor ijras dried by carbon dioxide at 623K fw lb. The CHO dissolved into methanol (SO ma %) was si lied by a micio f der at constant flow tate to e poiator. The vapor diluted by carbon dioxide P0mol%) was fed to flie tssiAor. The n ctor effluent was collected at prescribed time intervals to and analyzed by a gas chromah aph equipped glass with column (40m). [Pg.194]

Several other important commercial processes need to be mentioned. They are (not necessarily in the order of importance) the low pressure methanol process, using a copper-containing catalyst which was introduced in 1972 the production of acetic add from methanol over RhI catalysts, which has cornered the market the methanol-to-gasoline processes (MTG) over ZSM-5 zeolite, which opened a new route to gasoline from syngas and ammoxidation of propene over mixed-oxide catalysts. In 1962, catalytic steam reforming for the production of synthesis gas and/or hydrogen over nickel potassium alumina catalysts was commercialized. [Pg.74]

The purpose of this work was to increase the A3 selectivity at low conversion through a catalyst modification. Previous studies of phenol alkylation with methanol (the analogue reaction) over oxides and zeolites showed that the reaction is sensitive to acidic and basic properties of the catalysts [3-5]. It is the aim of this study to understand the dependence of catalyst structure and acidity on activity and selectivity in gas phase methylation of catechol. Different cations such as Li, K, Mg, Ca, B, incorporated into y-Al203 can markedly modify the polarisation of the lattice and consequently influence the acidic and basic properties of the surface [5-8] which control the mechanism of this reaction. [Pg.172]

Experiments were carried out using isotopically labelled methanol (97% 0) and ethanol (98% purchased from MSD Isotopes. Anhydrous isobutanol was purchased from Aldrich Chemical Co., Inc. and contained the natural abimdances of orygen isotopes, i.e. 99.8% and 0.2% O. Nafion-H was obtained fi om C. G. Processing, Inc. and Amberlyst resins were provided by Rohm and Haas. The 2SM-5 zeolite was provided by Mobil Research Development Corp. H-Mordenite, montmorillonite K-10, and silica-alumina 980 were obtained firom Norton, Aldrich, and Davison, respectively. y-AIumina was prepared from Catapal-B fi om Vista. [Pg.602]

The probe reaction utilized a 1/1 molar mixture of methanol and isobutanol over H-mordenite, a strongly acidic zeolite comprised of linear one-dimensional channels made up of 12-ring 6.5 by 7.0 A windows [8]. There is a side-pocket system in H-... [Pg.604]

The results in Table 3 show that H-mordenite has a high selectivity and activity for dehydration of methanol to dimethylether. At 150°C, 1.66 mol/kg catal/hr or 95% of the methanol had been converted to dimethylether. This rate is consistent with that foimd by Bandiera and Naccache [10] for dehydration of methanol only over H-mordenite, 1.4 mol/kg catal/hr, when extrt lat to 150°C. At the same time, only 0.076 mol/kg catal/hr or 4% of the isobutanol present has been converted. In contrast, over the HZSM-5 zeolite, both methanol and isobutanol are converted. In fact, at 175 X, isobutanol conversion was higher than methanol conversion over HZSM-5. This presents a seemingly paradoxical case of shape selectivity. H-Mordenite, the zeolite with the larger channels, selectively dehydrates the smaller alcohol in the 1/1 methanol/ isobutanol mixture. HZSM-5, with smaller diameter pores, shows no such selectivity. In the absence of methanol, under the same conditions at 15(fC, isobutanol reacted over H-mordenite at the rate of 0.13 mol/kg catal/hr, higher than in the presence of methanol, but still far less than over H M-5 or other catalysts in this study. [Pg.605]

Conclusive evidence has been presented that surface-catalyzed coupling of alcohols to ethers proceeds predominantly the S 2 pathway, in which product composition, oxygen retention, and chiral inversion is controlled 1 "competitive double parkir of reactant alcohols or by transition state shape selectivity. These two features afforded by the use of solid add catalysts result in selectivities that are superior to solution reactions. High resolution XPS data demonstrate that Brpnsted add centers activate the alcohols for ether synthesis over sulfonic add resins, and the reaction conditions in zeolites indicate that Brpnsted adds are active centers therein, too. Two different shape-selectivity effects on the alcohol coupling pathway were observed herein transition-state constraint in HZSM-5 and reactant approach constraint in H-mordenite. None of these effects is a molecular sieving of the reactant molecules in the main zeolite channels, as both methanol and isobutanol have dimensions smaller than the main channel diameters in ZSM-S and mordenite. [Pg.610]

The use of zeolites can also be very helpful in removing a reaction product that unfavourably influences the yield of the desired product. Thus, in the manufacture of antibiotic cefoxitin, the amide acylation results in the generation of HCI, which can be removed by the addition of molecular sieve 3 A or 4 A, which has a large capacity for HCI (Weinstock, 1986). Other examples are reactions in which products like methanol or water retard the rate and prevent the reaction to reach the desired degree of completion. Molecular sieves capture methanol or water very well. [Pg.154]

Chemicals and catalysts - Double distilled water was used in all experiments. Unless otherwise noted, chemicals were purchased from commercial companies and were used as received. Dodecanoic acid 98 wt% (GC), methanol, propanol and 2-ethylhexanol 99+ wt% were supplied by Aldrich, niobic acid by Companhia Brasileira de Metalurgia e Mineragao (CBMM), zirconil chloride octahydrate 98+ wt% by Acros Orgartics, 25 wt% NH3 solution and H2SO4 97% from Merck. Zeolites beta, Y and H-ZSM-5 were provided by Zeolyst, and ion-exchange resins by Alfa. [Pg.298]

Methanol played a role not only on selectivity but also on activity. With the methanol-lean solution the conversion was higher than with the commercial, methanol-rich solution. This confirms that methanol competes with formaldehyde for adsorption on active sites in the zeolite cavities. The ratio between isomers was not very different from that achieved at pH 2 under homogeneous conditions. [Pg.360]


See other pages where Methanol zeolites is mentioned: [Pg.141]    [Pg.91]    [Pg.150]    [Pg.207]    [Pg.210]    [Pg.141]    [Pg.91]    [Pg.150]    [Pg.207]    [Pg.210]    [Pg.588]    [Pg.565]    [Pg.499]    [Pg.1542]    [Pg.2093]    [Pg.306]    [Pg.833]    [Pg.1115]    [Pg.161]    [Pg.163]    [Pg.192]    [Pg.217]    [Pg.329]    [Pg.344]    [Pg.497]    [Pg.601]    [Pg.172]    [Pg.187]    [Pg.388]    [Pg.19]    [Pg.360]   
See also in sourсe #XX -- [ Pg.42 ]




SEARCH



Conversion of Methanol on Other Medium-pore Zeolites

Methanol conversion into gasoline, zeolites

Methanol conversion on zeolites

Methanol other metal zeolites

Methanol rhodium zeolites

Methanol toluene alkylation, zeolite

Methanol-ethylene, conversion zeolites

Rhodium zeolites methanol carbonylation

Zeolite carbonylation, methanol

Zeolites dimethylether from methanol

Zeolites ethylene from methanol

© 2024 chempedia.info