Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Methacrylates oxidation

Allylic intermediate, 27 185-187 ii-Allylic nickel intermediates, 33 15-18, 22 Allylic oxidation, see Oxidation, allylic Allylic species, 30 21 formation, isomerization, 30 18-19 free allyl radicals, 30 149 a-hydrogen abstraction, 30 147 Allyl methacrylate oxidation, 41 305 Allyls... [Pg.45]

Acrylic Methyl Ethylene acid methacrylate oxide... [Pg.415]

Unsaturated methacrylic Oxidatively formed peroxide Co salt 10... [Pg.330]

The oxidative coupling of alkenes which have two substituents at the 2 posi-tion, such as isobutylene, styrene, 2-phenylpropene, 1,1-diphenylethylene, and methyl methacrylate, takes place to give the 1,1,4.4-tetrasubstituted butadienes 285 by the action of Pd(OAc)2 or PdCF in the presence of sodium acetate[255-257]. Oxidation of styrene with Pd(OAc)2 produces 1.4-diphenylbutadiene (285, R = H) as a main product and a- and /3-acetoxystyrenes as minor pro-ducts[258]. Prolonged oxidation of the primary coupling product 285 (R = Me) of 2-phenylpropene with an excess of Pd(OAc)2 leads slowly to p-... [Pg.59]

Processes have been developed whereby the oxygen is suppHed from the crystal lattice of a metal-oxide catalyst (5) (see Acrylonitrile Methacrylic acid AND derivatives). [Pg.217]

Poly(acrylic acid) and Poly(methacrylic acid). Poly(acryHc acid) (8) (PAA) may be prepared by polymerization of the monomer with conventional free-radical initiators using the monomer either undiluted (36) (with cross-linker for superadsorber appHcations) or in aqueous solution. Photochemical polymerization (sensitized by benzoin) of methyl acrylate in ethanol solution at —78° C provides a syndiotactic form (37) that can be hydrolyzed to syndiotactic PAA. From academic studies, alkaline hydrolysis of the methyl ester requires a lower time than acid hydrolysis of the polymeric ester, and can lead to oxidative degradation of the polymer (38). Po1y(meth acrylic acid) (PMAA) (9) is prepared only by the direct polymerization of the acid monomer it is not readily obtained by the hydrolysis of methyl methacrylate. [Pg.317]

Dehydrogenation of Propionates. Oxidative dehydrogenation of propionates to acrylates employing vapor-phase reactions at high temperatures (400—700°C) and short contact times is possible. Although selective catalysts for the oxidative dehydrogenation of isobutyric acid to methacrylic acid have been developed in recent years (see Methacrylic ACID AND DERIVATIVES) and a route to methacrylic acid from propylene to isobutyric acid is under pilot-plant development in Europe, this route to acrylates is not presentiy of commercial interest because of the combination of low selectivity, high raw material costs, and purification difficulties. [Pg.156]

Difluoroethanol is prepared by the mercuric oxide cataly2ed hydrolysis of 2-bromo-l,l-difluoroethane with carboxyHc acid esters and alkaH metal hydroxides ia water (27). Its chemical reactions are similar to those of most alcohols. It can be oxidi2ed to difluoroacetic acid [381-73-7] (28) it forms alkoxides with alkaH and alkaline-earth metals (29) with alkoxides of other alcohols it forms mixed ethers such as 2,2-difluoroethyl methyl ether [461-57-4], bp 47°C, or 2,2-difluoroethyl ethyl ether [82907-09-3], bp 66°C (29). 2,2-Difluoroethyl difluoromethyl ether [32778-16-8], made from the alcohol and chlorodifluoromethane ia aqueous base, has been iavestigated as an inhalation anesthetic (30,31) as have several ethers made by addition of the alcohol to various fluoroalkenes (32,33). Methacrylate esters of the alcohol are useful as a sheathing material for polymers ia optical appHcations (34). The alcohol has also been reported to be useful as a working fluid ia heat pumps (35). The alcohol is available ia research quantities for ca 6/g (1992). [Pg.293]

Transesterification of methyl methacrylate with the appropriate alcohol is often the preferred method of preparing higher alkyl and functional methacrylates. The reaction is driven to completion by the use of excess methyl methacrylate and by removal of the methyl methacrylate—methanol a2eotrope. A variety of catalysts have been used, including acids and bases and transition-metal compounds such as dialkjitin oxides (57), titanium(IV) alkoxides (58), and zirconium acetoacetate (59). The use of the transition-metal catalysts allows reaction under nearly neutral conditions and is therefore more tolerant of sensitive functionality in the ester alcohol moiety. In addition, transition-metal catalysts often exhibit higher selectivities than acidic catalysts, particularly with respect to by-product ether formation. [Pg.248]

Functional Monomers. Hydroxy functional methacrylates ate accessible by the reaction of methacryhc acid and ethylene oxide or ptopjiene oxide in the presence of chromium (61), iron (62), or ion-exchange catalysts (63). [Pg.248]

Propylene-Based Routes. The strong acid-catalyzed carbonylation of propylene [115-07-1] to isobutyric acid (Koch reaction) followed by oxidative dehydration to methacrylic acid has been extensively studied since the 1960s. The principal side reaction in the Koch reaction is the formation of oligomers of propylene. Increasing yields of methacrylic acid in the oxydehydration step is the current focus of research. Isobutyric acid may also be obtained via the oxidation of isobutyraldehyde, which is available from the hydroformylation of propylene. The -butyraldehyde isomer that is formed in the hydroformylation must be separated. [Pg.252]

The oxidative dehydration of isobutyric acid [79-31-2] to methacrylic acid is most often carried out over iron—phosphoms or molybdenum—phosphoms based catalysts similar to those used in the oxidation of methacrolein to methacrylic acid. Conversions in excess of 95% and selectivity to methacrylic acid of 75—85% have been attained, resulting in single-pass yields of nearly 80%. The use of cesium-, copper-, and vanadium-doped catalysts are reported to be beneficial (96), as is the use of cesium in conjunction with quinoline (97). Generally the iron—phosphoms catalysts require temperatures in the vicinity of 400°C, in contrast to the molybdenum-based catalysts that exhibit comparable reactivity at 300°C (98). [Pg.252]

Only with propanal are very high conversions (99%) and selectivity (> 98 0) to MMA and MAA possible at this time. Although nearly 95% selective, the highest reported conversions with propionic acid or methyl propionate are only 30—40%. This results in large recycle streams and added production costs. The propanal route suffers from the added expense of the additional step required to oxidize methacrolein to methacrylic acid. [Pg.253]

Isobutjiene [115-11-7] or tert-huty alcohol can be converted to methacrylic acid in a two-stage, gas-phase oxidation process via methacrolein as an intermediate. The alcohol and isobutjiene may be used interchangeably in the processes since tert-huty alcohol [75-65-0] readily dehydrates to yield isobutjiene under the reaction conditions in the initial oxidation. Variations of this process have been commercialized by Mitsubishi Rayon and by a joint venture of Sumitomo and Nippon Shokubai. Nippon Kayaku, Mitsui Toatsu, and others have also been active in isobutjiene oxidation research. [Pg.253]

The first-stage catalysts for the oxidation to methacrolein are based on complex mixed metal oxides of molybdenum, bismuth, and iron, often with the addition of cobalt, nickel, antimony, tungsten, and an alkaU metal. Process optimization continues to be in the form of incremental improvements in catalyst yield and lifetime. Typically, a dilute stream, 5—10% of isobutylene tert-huty alcohol) in steam (10%) and air, is passed over the catalyst at 300—420°C. Conversion is often nearly quantitative, with selectivities to methacrolein ranging from 85% to better than 95% (114—118). Often there is accompanying selectivity to methacrylic acid of an additional 2—5%. A patent by Mitsui Toatsu Chemicals reports selectivity to methacrolein of better than 97% at conversions of 98.7% for a yield of methacrolein of nearly 96% (119). [Pg.253]

The oxidation of methacrolein to methacrylic acid is most often performed over a phosphomolybdic acid-based catalyst, usually with copper, vanadium, and a heavy alkaU metal added. Arsenic and antimony are other common dopants. Conversions of methacrolein range from 85—95%, with selectivities to methacrylic acid of 85—95%. Although numerous catalyst improvements have been reported since the 1980s (120—123), the highest claimed yield of methacryhc acid (86%) is still that described in a 1981 patent to Air Products (124). [Pg.253]

Several variations of the above process are practiced. In the Sumitomo-Nippon Shokubai process, the effluent from the first-stage reactor containing methacrolein and methacrylic acid is fed directiy to the second-stage oxidation without isolation or purification (125,126). In this process, overall yields are maximized by optimizing selectivity to methacrolein plus methacrylic acid in the first stage. Conversion of isobutjiene or tert-huty alcohol must be high because no recycling of material is possible. In another variation, Asahi Chemical has reported the oxidative esterification of methacrolein directiy to MMA in 80% yield without isolation of the intermediate MAA (127,128). [Pg.253]

Polymer Blends. The miscibility of poly(ethylene oxide) with a number of other polymers has been studied, eg, with poly (methyl methacrylate) (18—23), poly(vinyl acetate) (24—27), polyvinylpyrroHdinone (28), nylon (29), poly(vinyl alcohol) (30), phenoxy resins (31), cellulose (32), cellulose ethers (33), poly(vinyl chloride) (34), poly(lactic acid) (35), poly(hydroxybutyrate) (36), poly(acryhc acid) (37), polypropylene (38), and polyethylene (39). [Pg.342]

When equal amounts of solutions of poly(ethylene oxide) and poly(acryhc acid) ate mixed, a precipitate, which appears to be an association product of the two polymers, forms immediately. This association reaction is influenced by hydrogen-ion concentration. Below ca pH 4, the complex precipitates from solution. Above ca pH 12, precipitation also occurs, but probably only poly(ethylene oxide) precipitates. If solution viscosity is used as an indication of the degree of association, it appears that association becomes mote pronounced as the pH is reduced toward a lower limit of about four. The highest yield of insoluble complex usually occurs at an equimolar ratio of ether and carboxyl groups. Studies of the poly(ethylene oxide)—poly(methacryhc acid) complexes indicate a stoichiometric ratio of three monomeric units of ethylene oxide for each methacrylic acid unit. [Pg.342]

Poly(ethyl methacrylate) (PEMA) yields truly compatible blends with poly(vinyl acetate) up to 20% PEMA concentration (133). Synergistic improvement in material properties was observed. Poly(ethylene oxide) forms compatible homogeneous blends with poly(vinyl acetate) (134). The T of the blends and the crystaUizabiUty of the PEO depend on the composition. The miscibility window of poly(vinyl acetate) and its copolymers with alkyl acrylates can be broadened through the incorporation of acryUc acid as a third component (135). A description of compatible and incompatible blends of poly(vinyl acetate) and other copolymers has been compiled (136). Blends of poly(vinyl acetate) copolymers with urethanes can provide improved heat resistance to the product providing reduced creep rates in adhesives used for vinyl laminating (137). [Pg.467]

Butyl alcohol is employed as a feedstock in Japan to make methyl methacrylate monomer. In one such process (26), the alcohol is oxidized (in two steps) to acryHc acid, which is then esterified with methanol. In a similar process (27), /-butyl alcohol is oxidized in the presence of ammonia to give methacrylonitrile [126-98-7]. The latter is hydrolyzed to methacrjiamide [79-39-0] which then reacts with methanol to yield methyl methacrylate [80-62-6]. [Pg.358]

The handling of toxic materials and disposal of ammonium bisulfate have led to the development of alternative methods to produce this acid and the methyl ester. There are two technologies for production from isobutylene now available ammoxidation to methyl methacrylate (the Sohio process), which is then solvolyzed, similar to acetone cyanohydrin, to methyl methacrylate and direct oxidation of isobutylene in two stages via methacrolein [78-85-3] to methacryhc acid, which is then esterified (125). Since direct oxidation avoids the need for HCN and NH, and thus toxic wastes, all new plants have elected to use this technology. Two plants, Oxirane and Rohm and Haas (126), came on-stream in the early 1980s. The Oxirane plant uses the coproduct tert-huty alcohol direcdy rather than dehydrating it first to isobutylene (see Methacrylic acid). [Pg.373]

The cadmium chalcogenide semiconductors (qv) have found numerous appHcations ranging from rectifiers to photoconductive detectors in smoke alarms. Many Cd compounds, eg, sulfide, tungstate, selenide, teUuride, and oxide, are used as phosphors in luminescent screens and scintiUation counters. Glass colored with cadmium sulfoselenides is used as a color filter in spectroscopy and has recently attracted attention as a third-order, nonlinear optical switching material (see Nonlinear optical materials). DiaLkylcadmium compounds are polymerization catalysts for production of poly(vinyl chloride) (PVC), poly(vinyl acetate) (PVA), and poly(methyl methacrylate) (PMMA). Mixed with TiCl, they catalyze the polymerization of ethylene and propylene. [Pg.392]

Oxidative Garbonylation. Carbon monoxide is rapidly oxidized to carbon dioxide however, under proper conditions, carbon monoxide and oxygen react with organic molecules to form carboxyUc acids or esters. With olefins, unsaturated carboxyUc acids are produced, whereas alcohols yield esters of carbonic or oxalic acid. The formation of acryUc and methacrylic acid is carried out in the Hquid phase at 10 MPa (100 atm) and 110°C using palladium chloride or rhenium chloride catalysts (eq. 19) (64,65). [Pg.53]

The performance of many metal-ion catalysts can be enhanced by doping with cesium compounds. This is a result both of the low ionization potential of cesium and its abiUty to stabilize high oxidation states of transition-metal oxo anions (50). Catalyst doping is one of the principal commercial uses of cesium. Cesium is a more powerflil oxidant than potassium, which it can replace. The amount of replacement is often a matter of economic benefit. Cesium-doped catalysts are used for the production of styrene monomer from ethyl benzene at metal oxide contacts or from toluene and methanol as Cs-exchanged zeofltes ethylene oxide ammonoxidation, acrolein (methacrolein) acryflc acid (methacrylic acid) methyl methacrylate monomer methanol phthahc anhydride anthraquinone various olefins chlorinations in low pressure ammonia synthesis and in the conversion of SO2 to SO in sulfuric acid production. [Pg.378]

The acetone supply is strongly influenced by the production of phenol, and so the small difference between total demand and the acetone suppHed by the cumene oxidation process is made up from other sources. The largest use for acetone is in solvents although increasing amounts ate used to make bisphenol A [80-05-7] and methyl methacrylate [80-62-6]. a-Methylstyrene [98-83-9] is produced in controlled quantities from the cleavage of cumene hydroperoxide, or it can be made directly by the dehydrogenation of cumene. About 2% of the cumene produced in 1987 went to a-methylstyrene manufacture for use in poly (a-methylstyrene) and as an ingredient that imparts heat-resistant quaUties to polystyrene plastics. [Pg.364]


See other pages where Methacrylates oxidation is mentioned: [Pg.213]    [Pg.213]    [Pg.329]    [Pg.461]    [Pg.251]    [Pg.278]    [Pg.441]    [Pg.148]    [Pg.164]    [Pg.182]    [Pg.350]    [Pg.73]    [Pg.249]    [Pg.253]    [Pg.506]    [Pg.322]    [Pg.75]    [Pg.76]    [Pg.52]    [Pg.71]    [Pg.401]    [Pg.437]    [Pg.358]    [Pg.176]   
See also in sourсe #XX -- [ Pg.212 ]




SEARCH



Allyl methacrylate, oxidation

Butyl Methacrylate oxidation

Ethylene oxide/methyl methacrylate block

Ethylene oxide/methyl methacrylate block copolymer

Isobutane methacrylic acid oxidation

Methacrylate, ethylene oxide

Methacrylate, ethylene oxide substituted

Methacrylic acid, from oxidation

Methacrylic acid, from oxidation methacrolein

Methyl methacrylate, oxidation

Photo oxidation poly methyl methacrylate

© 2024 chempedia.info