Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metals, determination graphite furnace atomic absorption

Trace metals in sea water are preconcentrated either by coprecipitating with Ee(OH)3 and recovering by dissolving the precipitate or by ion exchange. The concentrations of several trace metals are determined by standard additions using graphite furnace atomic absorption spectrometry. [Pg.449]

Many of the published methods for the determination of metals in seawater are concerned with the determination of a single element. Single-element methods are discussed firstly in Sects. 5.2-5.73. However, much of the published work is concerned not only with the determination of a single element but with the determination of groups of elements (Sect. 5.74). This is particularly so in the case of techniques such as graphite furnace atomic absorption spectrometry, Zeeman background-corrected atomic absorption spectrometry, and inductively coupled plasma spectrometry. This also applies to other techniques, such as voltammetry, polarography, neutron activation analysis, X-ray fluroescence spectroscopy, and isotope dilution techniques. [Pg.128]

Statham [448] has optimised a procedure based on chelation with ammonium dithiocarbamate and diethylammonium diethyldithiocarbamate for the preconcentration and separation of dissolved manganese from seawater prior to determination by graphite furnace atomic absorption spectrometry. Freon TF was chosen as solvent because it appears to be much less toxic than other commonly used chlorinated solvents, it is virtually odourless, has a very low solubility in seawater, gives a rapid and complete phase separation, and is readily purified. The concentrations of analyte in the back-extracts are determined by graphite furnace atomic absorption spectrometry. This procedure concentrates the trace metals in the seawater by a factor of 67.3. [Pg.195]

Cadmium, copper, and silver have been determined by an ammonium pyrrolidine dithiocarbamate chelation, followed by a methyl isobutyl ketone extraction of the metal chelate from the aqueous phase [677], and finally followed by graphite furnace atomic absorption spectrometry. The detection limits of this technique for 1% absorption were 0.03 pmol/1 (copper), 2 nmol/1 (cadmium), and 2 nmol/1 (silver). [Pg.242]

Tominaga et al. [682,683] studied the effect of ascorbic acid on the response of these metals in seawater obtained by graphite-furnace atomic absorption spectrometry from standpoint of variation of peak times and the sensitivity. Matrix interferences from seawater in the determination of lead, magnesium, vanadium, and molybdenum were suppressed by addition of 10% (w/v) ascorbic acid solution to the sample in the furnace. Matrix effects on the determination of cobalt and copper could not be removed in this way. These workers propose a direct method for the determination of lead, manganese, vanadium, and molybdenum in seawater. [Pg.246]

Mykytiuk et al. [184] have described a stable isotope dilution sparksource mass spectrometric method for the determination of cadmium, zinc, copper, nickel, lead, uranium, and iron in seawater, and have compared results with those obtained by graphite furnace atomic absorption spectrometry and inductively coupled plasma emission spectrometry. These workers found that to achieve the required sensitivity it was necessary to preconcentrate elements in the seawater using Chelex 100 [121] followed by evaporation of the desorbed metal concentrate onto a graphite or silver electrode for isotope dilution mass spectrometry. [Pg.287]

The major anions and cations in seawater have a significant influence on most analytical protocols used to determine trace metals at low concentrations, so production of reference materials in seawater is absolutely essential. The major ions interfere strongly with metal analysis using graphite furnace atomic absorption spectroscopy (GFAAS) and inductively coupled plasma mass spectroscopy (ICP-MS) and must be eliminated. Consequently, preconcentration techniques used to lower detection limits must also exclude these elements. Techniques based on solvent extraction of hydrophobic chelates and column preconcentration using Chelex 100 achieve these objectives and have been widely used with GFAAS. [Pg.50]

Other applications of supported liquid membranes have been related to metal speciation. For example, recently a system for chromium speciation has been developed based on the selective extraction and enrichment of anionic Cr(VI) and cationic Cr(III) species in two SLM units connected in series. Aliquat 336 and DEHPA were used respectively as carriers for the two species and graphite furnace atomic absorption spectrometry used for final metal determination. With this process, it was possible to determine chromium in its different oxidation states [103]. [Pg.582]

Both flame and graphite furnace atomic absorption spectrometry are two of the commonest techniques used for the determination of metals and metalloids. Various authors " have discussed the application of both to the analysis of trace elements in biological materials. [Pg.163]

The recommended procedure for the determination of arsenic and antimony involves the addition of 1 g of potassium iodide and 1 g of ascorbic acid to a sample of 20 ml of concentrated hydrochloric acid. This solution should be kept at room temperature for at least five hours before initiation of the programmed MH 5-1 hydride generation system, i.e., before addition of ice-cold 10% sodium borohydride and 5% sodium hydroxide. In the hydride generation technique the evolved metal hydrides are decomposed in a heated quartz cell prior to determination by atomic absorption spectrometry. The hydride method offers improved sensitivity and lower detection limits compared to graphite furnace atomic absorption spectrometry. However, the most important advantage of hydride-generating techniques is the prevention of matrix interference, which is usually very important in the 200 nm area. [Pg.31]

Several biologically important metals can be determined directly in body fluids, especially urine, by atomic absorption. In the simplest cases, the urine is diluted with water or acid and a portion analyzed directly by graphite furnace atomic absorption, taking advantage of the very high sensitivity of that technique for some metals. Metals that can be determined directly in urine by this approach include chromium, copper, lead, lithium, and zinc. Very low levels of metals can be... [Pg.415]

A number of methods have been described for determining the concentrations of toxic metals in biological samples.These methods include graphite furnace atomic absorption spectrometry (GF-AAS), electroanalytical techniques such as anodic stripping voltammetry (ASV), neutron activation analysis (NAA), and mass spectrometry (MS). Amongst these techniques, mass spectrometry occupies a unique role due to its potential to measure the... [Pg.274]

Potentiometric stripping analysis, as stated in one review,92 "is not as general an analytical technique for the determination of metal traces as is graphite-furnace atomic absorption spectroscopy." It is used as a complementary technique for assay of some toxic metals in water (zinc, cadmium, lead, and copper in potable water and wastewater,93 94 and lead and thallium in seawater.95 The advantage of anodic stripping voltammetry (ASV) is summarized in two steps, which include electrolytic preconcentration and the stripping process. There are a number of interfering ions that can affect the... [Pg.37]

Other publications with a sample treatment component of relevance are those by Burguera et al. (1995, Determination of iron and zinc by on-line microwave-assisted mineralization and flow-injection graphite furnace atomic absorption spectrometry) Torres et al. (1995, Microwave-assisted robotic method for the determination of trace metals in soil) and Burguera et al. [Pg.1541]

We will not consider discussing the principles of ICP-MS here since not all environmental testing labs have such expensive instrumentation at present. You will most likely see atomic absorption spectrophotometers In labs that have older ICP-AES instruments, EPA contract lab requirements are that the elements As, Se, Tl, and Pb be determined by graphite furnace atomic absorption and the remaining priority pollutant metals be determined by ICP-AES. [Pg.433]

Among the common metal ions, only aluminum and cobalt gave peaks when complexed with 8-quinolinol and eluted with SDS-acetonitrile mobile phases. However, the peaks appeared very close to each other with spectrophotometric detection (Fig. 12.2). The selective determination of aluminum was only possible with fluorimetric detection. The addition of SDS as well as several other surfactants to the aluminum complex solution, increased the fluorescence intensity. The procedure did not require deproteinization prior to analysis. The most commonly used technique for aluminum in human serum is graphite-furnace atomic absorption spectrophotometry, which is often limited due to serum matrix interference. [Pg.440]

Based on the principles of precipitate flotation, a rapid and convenient separation technique has been developed for the determination of toxic heavy metals adsorbed on suspended solids in freshwater. Because suspended solids are negatively charged species, they are rendered hydrophobic and coagulate to form bulky floes with a cationic surfactant and sodium chloride (to increase the ionic strength). The floes are easily floated by bubbling and are then treated in nitric acid to determine the desorbed heavy metals (e.g., chromium, manganese, copper, cadmium, and lead) by graphite furnace atomic absorption spectrometry. [Pg.1439]

ASTM (2002) D1971-02 Standard Practices for Digestion of Water Samples for Determination of Metals by Flame Atomic Absorption, Graphite Furnace Atomic Absorption, Plasma Emission Spectroscopy, or Plasma Mass Spectrometry. ASTM International. For referenced ASTM standards, visit the ASTM website www.astm.org. [Pg.4162]

Nakashima, S. Sturgeon, R.E. Willie, S.N. Berman, S.S. Determination of trace metals in seawater by graphite furnace atomic absorption spectrometry with preconcentration on silica-immobilized 8-hydroxyquinoline in a flow-system. Fresenius Z. Anal. Chem. 1988, 330 (7), 592. [Pg.1455]


See other pages where Metals, determination graphite furnace atomic absorption is mentioned: [Pg.457]    [Pg.183]    [Pg.181]    [Pg.45]    [Pg.456]    [Pg.177]    [Pg.245]    [Pg.177]    [Pg.75]    [Pg.337]    [Pg.416]    [Pg.252]    [Pg.259]    [Pg.284]    [Pg.21]    [Pg.115]    [Pg.434]    [Pg.69]    [Pg.457]    [Pg.126]    [Pg.1544]    [Pg.49]    [Pg.215]    [Pg.221]    [Pg.224]    [Pg.227]    [Pg.278]    [Pg.528]    [Pg.16]    [Pg.364]    [Pg.5046]   


SEARCH



Atomic absorption determination

Furnace atomizers

Graphite atomizer

Graphite furnace atomic absorption

Graphite metal

Metal determination

Metallized graphite

Metals, determination graphite furnace atomic absorption spectrometry

© 2024 chempedia.info