Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Membrane solvent separation

Bruggen B (2009), Fundamentals of membrane solvent separation , in Drioh E and Giorno L, Membrane Operations, Innovative Separations and Transformations, Weinheim, WUey-V CH, 45-61. [Pg.32]

Another possibility of constructing a chiral membrane system is to prepare a solution of the chiral selector which is retained between two porous membranes, acting as an enantioselective liquid carrier for the transport of one of the enantiomers from the feed solution of the racemate to the receiving side (Fig. 1-5). This system is often referred to as membrane-assisted separation. The selector should not be soluble in the solvent used for the elution of the enantiomers, whose transport is driven by a gradient in concentration or pH between the feed and receiving phases. As a drawback common to all these systems, it should be mentioned that the transport of one enantiomer usually decreases when the enantiomer ratio in the permeate diminishes. Nevertheless, this can be overcome by designing a system where two opposite selectors are used to transport the two enantiomers of a racemic solution simultaneously, as it was already applied in W-tube experiments [171]. [Pg.15]

Applications Membranes create a boundary between different bulk gas or hquid mixtures. Different solutes and solvents flow through membranes at different rates. This enables the use of membranes in separation processes. Membrane processes can be operated at moderate temperatures for sensitive components (e.g., food, pharmaceuticals). Membrane processes also tend to have low relative capital and energy costs. Their modular format permits rehable scale-up and operation. This unit operation has seen widespread commercial adoption since the 1960s for component enrichment, depletion, or equilibration. Estimates of annual membrane module sales in 2005 are shown in Table 20-16. Applications of membranes for diagnostic and bench-scale use are not included. Natural biological systems widely employ membranes to isolate cells, organs, and nuclei. [Pg.36]

Membranes act as a semipermeable barrier between two phases to create a separation by controlling the rate of movement of species across the membrane. The separation can involve two gas (vapor) phases, two liquid phases or a vapor and a liquid phase. The feed mixture is separated into a retentate, which is the part of the feed that does not pass through the membrane, and a permeate, which is that part of the feed that passes through the membrane. The driving force for separation using a membrane is partial pressure in the case of a gas or vapor and concentration in the case of a liquid. Differences in partial pressure and concentration across the membrane are usually created by the imposition of a pressure differential across the membrane. However, driving force for liquid separations can be also created by the use of a solvent on the permeate side of the membrane to create a concentration difference, or an electrical field when the solute is ionic. [Pg.193]

Grafting of functional monomers onto fluoropolymers produced a wide variety of permselective membranes. Grafting of styrene (with the following sulfonation), (meth)acrylic acids, 4-vinylpyridine, A-vinylpyrrolidone onto PTFE films gave membranes for reverse omosis,32-34 ion-exchange membrane,35-39 membranes for separating water from organic solvents by pervaporation,49-42 as well as other kinds of valuable membranes. [Pg.99]

A typical extraction manifold is shown in Figure 13.2. The sample is introduced by aspiration or injection into an aqueous carrier that is segmented with an organic solvent and is then transported into a mixing coil where extraction takes place. Phase separation occurs in a membrane phase separator where the organic phase permeates through the Teflon membrane. A portion of one of the phases is led through a flow cell and an on-line detector is used to monitor the analyte content. The back-extraction mode in which the analyte is returned to a suitable aqueous phase is also sometimes used. The fundamentals of liquid liquid extraction for FIA [169,172] and applications of the technique [174 179] have been discussed. Preconcentration factors achieved in FIA (usually 2-5) are considerably smaller than in batch extraction, so FI extraction is used more commonly for the removal of matrix interferences. [Pg.598]

If product inhibition occurs, either a stirred-tank reactor in batch or a plug-flow reactor should be used. In these two reactors, the product concentration increases with time. Alternatively a reactor with integrated product separation (membrane, solvent, etc.) is preferable. [Pg.584]

Figure 3.2 shows schematically two liquid phases —one solution, the other pure solvent — separated by a partition known as a semipermeable membrane. In many ways this membrane is the central feature of osmometry we have more to say about it, but for now it is sufficient to define a semipermeable membrane as one that is permeable to the solvent and impermeable... [Pg.110]

As we discussed in Section 3.2, samples of solution and solvent separated by a semipermeable membrane will be at equilibrium only when the solution is at a greater pressure than the solvent. This is the osmotic pressure. If the solution is under less pressure than the equilibrium osmotic pressure, solvent will flow from the pure phase into the solution. If, on the other hand, the solution is under a pressure greater than the equilibrium osmotic pressure, the pure solvent will flow in the reverse direction, from the solution to the solvent phase. In the last case, the semipermeable membrane functions like a filter that separates solvent from solute molecules. In fact, the process is referred to in the literature by the terms hyperfiltration and ultrafiltration, as well as reverse osmosis (Sourirajan 1970) however, the last term is enjoying common use these days. [Pg.140]

The ionic monomer that forms the proton exchange membrane (PEM) separating and ionically connecting the two gas diffusion electrodes can be dissolved in isobutyl alcohol or other organic solvents, such as isopropanol. This circumstance opens the way for improving the ionic contact between the catalyst particles of a gas diffusion electrode and the proton-conducting membrane and electrolyte. [Pg.143]

Certain materials, including those that make up the membranes around living cells, are semipermeable. That is, they allow water or other small molecules to pass through, but they block the passage of large solute molecules or ions. When a solution and a pure solvent (or two solutions of different concentration) are separated by the right kind of semipermeable membrane, solvent molecules pass... [Pg.453]

The variety of materials which can be incorporated into polyelectrolyte multilayers makes them attractive to use as biosensors [431], Polyelectrolyte multilayers can also be formed on curved surfaces of small particles [432], After adsorption, the core particle can be chemically dissolved and a hollow polyelectrolyte capsule remains. These capsules are selectively permeable for small molecules like water or certain dyes. The permeability can be tuned externally by varying the ion strength, pH, temperature and solvent nature [433 135], Therefore, it has been suggested to use them as selective membranes for separation, as well as a possible drug delivery system. The adjustment of their size and permeability allows us to exploit them as micro- or nanocontainers for chemical synthesis and crystallization. [Pg.215]

Danesi, P.R. Chiarizia, R. Rickert, P. Horwitz, E.P. Separation of actinides and lanthanides from acidic nuclear wastes by supported liquid membranes, Solvent Extr. Ion Exch. 3 (1985) 111-147. [Pg.116]

The first, and currently only, successful solvent-permeable hyperfiltration membrane is the Starmem series of solvent-resistant membranes developed by W.R. Grace [40]. These are asymmetric polyimide phase-inversion membranes prepared from Matrimid (Ciba-Geigy) and related materials. The Matrimid polyimide structure is extremely rigid with a Tg of 305 °C and the polymer remains glassy and unswollen even in aggressive solvents. These membranes found their first large-scale commercial use in Mobil Oil s processes to separate lube oil from methyl ethyl ketone-toluene solvent mixtures [41-43], Scarpello et al. [44] have also achieved rejections of >99 % when using these membranes to separate dissolved phase transfer catalysts (MW 600) from tetrahydrofuran and ethyl acetate solutions. [Pg.211]

L.S. White, I.-F. Wang and B.S. Minhas, Polyimide Membranes for Separation of Solvents from Lube Oil, US Patent 5,264,166 (November 1993). [Pg.234]

Subsequent individual chapters discuss membranes in organic solvent separation, gas separation and electrochemical separation. A whole chapter is focused on the fundamentals of fouling molecular separation by membranes are completed by a chapter focused on fouling, and another on energy and environmental issues. [Pg.1]

Traditional polymers for separations in water have a limited chemical resistance and are not useful for solvent separations. Some may be applicable in nonaggressive solvents such as methanol and ethanol due to crosslinking, additives or additional interlayers, but not in any other solvent modified polyamide membranes and poly (ethersulfone) membranes are typical examples. [Pg.48]


See other pages where Membrane solvent separation is mentioned: [Pg.45]    [Pg.46]    [Pg.48]    [Pg.50]    [Pg.52]    [Pg.54]    [Pg.56]    [Pg.58]    [Pg.60]    [Pg.45]    [Pg.46]    [Pg.48]    [Pg.50]    [Pg.52]    [Pg.54]    [Pg.56]    [Pg.58]    [Pg.60]    [Pg.152]    [Pg.198]    [Pg.126]    [Pg.640]    [Pg.386]    [Pg.10]    [Pg.272]    [Pg.186]    [Pg.323]    [Pg.280]    [Pg.339]    [Pg.424]    [Pg.386]    [Pg.192]    [Pg.209]    [Pg.211]    [Pg.229]    [Pg.21]    [Pg.46]    [Pg.48]   
See also in sourсe #XX -- [ Pg.45 ]




SEARCH



Fundamentals of Membrane Solvent Separation and Pervaporation

Membrane solvent

Solvent separate

© 2024 chempedia.info