Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Melamine-formaldehyde applications

Interesting developments were also taking place in the field of thermosetting resins. The melamine-formaldehyde materials appeared commercially in 1940 whilst soon afterwards in the United States the first contact resins were used. With these materials, the forerunners of today s polyester laminating resins, it was found possible to produce laminates without the need for application of external pressure. The first experiments in epoxide resins were also taking place during this period. [Pg.7]

The term aminoplastics has been coined to cover a range of resinous polymers produced by interaction of amines or amides with aldehydes. Of the various polymers of this type that have been produced there are two of current commercial importance in the field of plastics, the urea-formaldehyde and the melamine-formaldehyde resins. There has in the past also been some commercial interest in aniline-formaldehyde resins and in systems containing thiourea but today these are of little or no importance. Melamine-phenol-formaldehyde resins have also been introduced for use in moulding powders, and benzoguanamine-based resins are used for surface coating applications. [Pg.668]

By far the bulk of amino resins are used in the woodworking industry for the manufacture of chipboard, plywood and as general glues and adhesives. Melamine-formaldehyde is an important component of decorative laminates. The amount of amino resins used for moulding applications is only of the order of 5% of the total. [Pg.669]

Melamine (I,3,5-triamino-2,4,6-triazine) was first prepared by Liebig in 1835. For a hundred years the material remained no more than a laboratory curiosity until Henkel patented the production of resins by condensation with formaldehyde. Today large quantities of melamine-formaldehyde resins are used in the manufacture of moulding compositions, laminates, adhesives, surface coatings and other applications. Although in many respects superior in properties to the urea-based resins they are also significantly more expensive. [Pg.680]

The principal application of melamine-formaldehyde moulding compositions is for the manufacture of tableware, largely because of their wide colour range, surface hardness and stain resistance. The stain resistance does, however, leave something to be desired and one aim of current research is to discover alternative materials superior in this respect. Cellulose-filled compositions also find a small outlet for trays, clock cases and radio cabinets and other purposes. The mineral-filled powders are used in electrical applications and knobs and handles for kitchen utensils. [Pg.685]

Good quality steel is used and electrozinc is preferred for washing machines. Steel is pretreated with iron phosphate for economy electrozinc with a fine crystal zinc phosphate. No primer is normally used 25-40/im of finish is applied direct to metal. The required properties are best obtained with a thermosetting acrylic or polyester/melamine-formaldehyde finish. Self-reactive acrylics are usually preferred these resins contain about 15 Vo 7V-butoxymethyl acrylamide (CH2=CH —CO —NH —CHj—O —C4H,) monomer and cure in a manner similar to butylated melamine-formaldehyde resins. Resistance or anti-corrosive properties may be upgraded by the inclusion of small amounts of epoxy resin. Application is usually by electrostatic spray application from disc or bell. Shapes are complex enough to require convected hot-air curing. Schedules of 20 min at 150-175°C are... [Pg.631]

Thermosets differ molecularly from thermoplastics in that their individual chains are anchored to one another through crosslinks. The resulting network creates cohesive materials that demonstrate better thermal stability, rigidity, and dimensional stability than thermoplastics. Some examples of traditional thermosets are melamine-formaldehyde resins, which are used to treat fabrics to make them wrinkle-free, and Bakelite (a phenol-formaldehyde resin), a historically important polymer used in many applications, such as costume jewelry, electrical switches, and radio casings. [Pg.59]

The industrial production and application of reactive and non-reactive microgels in organic coatings such as binders or components of binders, e.g. together with, e.g. acrylic and/or melamine/formaldehyde resins, especially for automotive coatings, was reported in a number of publications between 1980 and... [Pg.220]

Other nonfood applications of D-sorbitol result from etherification and polycondensation reactions providing biodegradable polyetherpolyols used for soft pol5mrethane foams and melamine/formaldehyde or phenol resins. Sizable amounts of D-sorbitol also enter into the production of the sorbitan ester surfactants (cf. later in this chapter). [Pg.29]

Together, antifreeze, PET, and polyester polymers account for about 98% of the ethylene glycol produced in the United States. It is also used sometimes as a deicer for aircraft surfaces. The two hydroxyl groups in the EG molecule also make EG suitable for the manufacture of surfactants and in latex paints. Other applications include hydraulic brake fluid, the manufacture of alkyd resins for surface coatings, and stabilizers for water dispersions of urea-formaldehyde and melamine-formaldehyde The hygroscopic properties (absorbs moisture from the air) make EG useful as a humectant for textile fibers, paper, leather, and adhesives treatment. [Pg.153]

Another use of urea is for resins, which are used in numerous applications including plastics, adhesives, moldings, laminates, plywood, particleboard, textiles, and coatings. Resins are organic liquid substances exuded from plants that harden on exposure to air. The term now includes numerous synthetically produced resins. Urea resins are thermosetting, which means they harden when heated, often with the aid of a catalyst. The polymerization of urea and formaldehyde produces urea-formaldehyde resins, which is the second most abundant use of urea. Urea is dehydrated to melamine, which, when combined with formaldehyde, produces melamine-formaldehyde resins (Figure 96.2). Melamine resins tend to be harder and more heat-resistant than urea-formaldehyde resins. Melamine received widespread attention as the primary pet food and animal feed contaminant causing numerous cat and dog deaths in early... [Pg.289]

Urea—formaldehyde and melamine—formaldehyde reagents are resin formers, which not only cross-link cotton but also copolymerize with themselves. These have been used both as simple cross-linkers or prepolymer systems. If too much of the polymerization is concentrated on the fiber surface, the fabric may be sufficiendy stiffer that it takes on a boardy character. As such, the finisher must control the action of agent to give the desired crisp hand but prevent the development of boardiness. Melamines have been recommended for applications when complete shrink resistance is required. However, both finishes were rejected for the white-shirt market because of loss of strength when hypochlorite bleach is used on account of vulnerable NH groups and the ensuing discoloration (37). [Pg.444]

Urea is used as a solid fertilizer, a liquid fertilizer and miscellaneous applications such as animal feed, urea, formaldehyde resins, melamine, and adhesives. Presently, the most popular nitrogen fertilizer is a urea-ammonium nitrate solution. Urea-formaldehyde resins have large use as a plywood adhesive. Melamine-formaldehyde resins are used as dinnerware and for extra-hard surfaces (Formica ). The melamine is synthesized by condensation of urea molecules. [Pg.537]

Melamine-formaldehyde (MF) is qualitatively better than UF. It is, therefore, used in more demanding applications such as crockery, various electrotechnical articles and decorative panels. [Pg.18]

Surface Coatings. Melamine-formaldehyde (MF) resins are used for surface coatings in automotive applications, for metal containers, for metal furniture, for coil coatings and for electric appliances. [Pg.305]

The major synthetic adhesives used for bonding wood include urea, phenol, and melamine formaldehyde resorcinol formaldehyde, phenol resorcinol, and polyvinyl acetate emulsions. More recently one-component, moisture cured polyurethane adhesives have become popular for bonding wood. Natural adhesives such as casein and animal glues are also often used for general-purpose wood bonding. Epoxies have been used for certain specialized wood joining applications such as when wood is bonded to metal substrates. [Pg.384]

In certain cases the acidity Melamine Formaldehyde resins (MF resins) or alkaline Polyurethane (also known us PU) resin (PUR resin) and alkali hardener (epoxy resin) can corrode or even totally dissolve the metallic pigments. In case of bronze pigments a color shift is possible. For these applications special metallic pigments are recommended, which are protected by an organic or inorganic coatings [14]. [Pg.219]

A recent innovation in in-situ microencapsulation is the development of acid-triggered release of pesticide from the microcapsules [12]. Diols and aldehydes are reacted to form an acid labile acetal moiety. The acetal is then reacted with isocyanate to create a prepolymer. The prepolymer is a polyisocyanate cmitaining the acid labile moiety and suitable for in-situ shellwall polymerization. The prepolymer is dissolved into a pesticide, emulsified into water, and shellwall formed in-situ. Under alkaline or neutral pH conditions in a container, the insecticide is safely contained in the microcapsules. Acid could be added to the spray tank to rapidly release capsule contents prior to application. Alternate shellwall chemistry for in-situ microencapsulation utilizes etherified urea-formaldehyde prepolymers in the oil phase that are self-condensed with acid catalyst to produce encapsulating aminoplast shellwalls [13]. This process does not have the problem of continuing CO2 evolution. Water-soluble urea-formaldehyde and melamine-formaldehyde prepolymers can be selected to microencapsulate water or aqueous solutions [14]. [Pg.274]

Mineral fillers find application for melamine-formaldehyde resins, thus enabling compositions to be obtained with heat resistance in excess of 200 °C. [Pg.31]


See other pages where Melamine-formaldehyde applications is mentioned: [Pg.144]    [Pg.354]    [Pg.151]    [Pg.578]    [Pg.652]    [Pg.688]    [Pg.689]    [Pg.191]    [Pg.521]    [Pg.167]    [Pg.17]    [Pg.64]    [Pg.125]    [Pg.256]    [Pg.290]    [Pg.71]    [Pg.144]    [Pg.541]    [Pg.189]    [Pg.15]    [Pg.93]    [Pg.239]    [Pg.153]    [Pg.81]    [Pg.123]    [Pg.36]    [Pg.225]    [Pg.519]    [Pg.337]    [Pg.562]    [Pg.336]   
See also in sourсe #XX -- [ Pg.17 ]




SEARCH



Applications melamine-formaldehyde resins

Melamine

© 2024 chempedia.info