Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rubbers mechanical properties

Chattopadhyay S., Chaki T.K., and Bhowmick A.K., New thermoplastic elastomers from poly(ethyle-neoctene) (engage), poly(ethylene-vinyl acetate) and low-density polyethylene by electron beam technology structural characterization and mechanical properties. Rubber Chem. TechnoL, 74, 815, 2001. Roy Choudhury N. and Dutta N.K., Thermoplastic elastomeric natural rubber-polypropylene blends with reference to interaction between the components. Advances in Polymer Blends and Alloys Technology, Vol. 5 (K. Finlayson, ed.), Technomic Publishers, Pensylvania, 1994, 161. [Pg.156]

Sodium hexamethylene-l,6-bisthiosulflde dihydrate, when added to the vulcanization system, breaks down and inserts a hexamethylene-1,6-dithiyl group within a disulfide or polysulfide crosslink. This is termed a hybrid crosslink. During extended vulcanization periods or accumulated heat history due to product service, polysulfidic-hexamethylene crosslinks shorten to produce thermally stable elastic monosulfidic crosslinks. At levels up to 2.0 phr, there is little effect on compound induction or scorch times, nor on other compound mechanical properties (Rubber Chemicals, 1998). [Pg.457]

Harris, F. W. et al. State of the Art Polymer Chemistry. /. Chem. Educ. 1981,58, (Nov). (This issue contains 17pap>ers on jxjlymer chemistry. The series covers structures, properties, mechanisms of formation, methods of preparation, stereochemistry, molecular weight distribution, rheological behavior of polymer melts, mechanical properties, rubber elasticity, block and graft cojxjlymers, organometaUic polymers, fibers, ionic polymers, and polymer compatibility.)... [Pg.406]

Dubois Ph, Yu Y S, Teyssie Ph and Jerome R (1997) New polybutadiene-based thermoplastic elastomers synthesis, morphology and mechanical properties. Rubber Chem Tech 70 714-726. [Pg.24]

The radiation and temperature dependent mechanical properties of viscoelastic materials (modulus and loss) are of great interest throughout the plastics, polymer, and rubber from initial design to routine production. There are a number of laboratory research instruments are available to determine these properties. All these hardness tests conducted on polymeric materials involve the penetration of the sample under consideration by loaded spheres or other geometric shapes [1]. Most of these tests are to some extent arbitrary because the penetration of an indenter into viscoelastic material increases with time. For example, standard durometer test (the "Shore A") is widely used to measure the static "hardness" or resistance to indentation. However, it does not measure basic material properties, and its results depend on the specimen geometry (it is difficult to make available the identity of the initial position of the devices on cylinder or spherical surfaces while measuring) and test conditions, and some arbitrary time must be selected to compare different materials. [Pg.239]

Nitrile mbber finds broad application in industry because of its excellent resistance to oil and chemicals, its good flexibility at low temperatures, high abrasion and heat resistance (up to 120°C), and good mechanical properties. Nitrile mbber consists of butadiene—acrylonitrile copolymers with an acrylonitrile content ranging from 15 to 45% (see Elastomers, SYNTHETIC, NITRILE RUBBER). In addition to the traditional applications of nitrile mbber for hoses, gaskets, seals, and oil well equipment, new applications have emerged with the development of nitrile mbber blends with poly(vinyl chloride) (PVC). These blends combine the chemical resistance and low temperature flexibility characteristics of nitrile mbber with the stability and ozone resistance of PVC. This has greatly expanded the use of nitrile mbber in outdoor applications for hoses, belts, and cable jackets, where ozone resistance is necessary. [Pg.186]

Rubber. The mbber industry consumes finely ground metallic selenium and Selenac (selenium diethyl dithiocarbamate, R. T. Vanderbilt). Both are used with natural mbber and styrene—butadiene mbber (SBR) to increase the rate of vulcanization and improve the aging and mechanical properties of sulfudess and low sulfur stocks. Selenac is also used as an accelerator in butyl mbber and as an activator for other types of accelerators, eg, thiazoles (see Rubber chemicals). Selenium compounds are useflil as antioxidants (qv), uv stabilizers, (qv), bonding agents, carbon black activators, and polymerization additives. Selenac improves the adhesion of polyester fibers to mbber. [Pg.337]

As we saw in the first chapter, polymers have become important engineering materials. They are much more complex structurally than metals, and because of this they have very special mechanical properties. The extreme elasticity of a rubber band is one the formability of polyethylene is another. [Pg.51]

The diene rubbers, including polychloroprene, comprise some 90% of the total rubber market. This is due to their generally low cost, the suitability of many of them as tyre rubbers and their good mechanical properties. [Pg.285]

In the mid-1970s there was a short period during which styrene was in very short supply. This led to the development of what were known as high-vinyl polybutadienes which contained pendent vinyl groups as a result of 1,2-polymer-isation mechanisms. These rubbers had properties similar to those of SBR and could replace the latter should it become economically desirable. [Pg.291]

The important properties of the rubbers are their temperature stability, retention of elasticity at low temperatures and good electrical properties. They are much more expensive than the conventional rubbers (e.g. natural rubber and SBR) and have inferior mechanical properties at room temperature. [Pg.838]

The dry adhesive films on the two substrates to be joined must be placed in contact to develop adequate autoadhesion, i.e. diffusion of polymer rubber chains must be achieved across the interface between the two films to produce intimate adhesion at molecular level. The application of pressure and/or temperature for a given time allows the desired level of intimate contact (coalescence) between the two adhesive film surfaces. Obviously, the rheological and mechanical properties of the rubber adhesives will determine the degree of intimacy at the interface. These properties can be optimized by selecting the adequate rubber grade, the nature and amount of tackifier and the amount of filler, among other factors. [Pg.575]

Effect of the phenolic resin content in the mechanical properties of nitrile rubber... [Pg.659]

Fluorinated rubbers, copolymers of hexafluoropropylene and vinylidene-fluorides, have excellent resistance to oils, fuels and lubricants at temperatures up to 200°C. They have better resistance to aliphatic, aromatic and chlorinated hydrocarbons and most mineral acids than other rubbers, but their high cost restricts their engineering applications. Cheremisinoff et al. [54] provide extensive physical and mechanical properties data on engineering plastics. A glossary of terms concerned with fabrication and properties of plastics is given in the last section of this chapter. [Pg.123]

New elastic polymeric materials (resistance to higher stroke or air) can be obtained by using physical modification methods, but using this method, two phases (PS and rubber) in the mixture were formed. Small rubber particles spread as a PS layer and, after awhile, the relationship between the layers decreases and rubber particles gather in the upper layer of the materials. This can be the cause of the loss of resistance of the materials. These material disadvantages have stimulated the polymer synthesis to increase the PS resistance to higher physico-mechanical properties, such as higher temperature and stroke for the chemical modification of PS with various functional modifiers. [Pg.259]

Natural rubber was the only polymer for elastomer production until the advent of synthetics. Natural rubber, however, continues to maintain its competitive edge due mainly to the gain in properties such as high resilience, low hysteresis, low heat buildup, and excellent tack with mechanical properties achieved through the process of vulcanization [114-115]. The industry is said to be self-sufficient with a good technological base and is expected to compete successfully with synthetics because of the edge in properties mentioned above [116,117]. [Pg.417]

Improvement in the solvent and oil resistance of rubbers can be achieved via grafting of acrylonitrile onto rubber [140-142] and rubber blends [143]. The careful control of the degree of grafting allows vulcanized rubber with high-mechanical properties compared with ungrafted vulcanized rubber to be obtained. Also, acid resistance [144] and resistance to microbiological attack [145,146] was improved for cellulose grafted with acrylonitrile, and increases in base resistance were also noted for MMA and a mixture of MMA and ethyl acrylate [13],... [Pg.512]

Coran and Patel [33] selected a series of TPEs based on different rubbers and thermoplastics. Three types of rubbers EPDM, ethylene vinyl acetate (EVA), and nitrile (NBR) were selected and the plastics include PP, PS, styrene acrylonitrile (SAN), and PA. It was shown that the ultimate mechanical properties such as stress at break, elongation, and the elastic recovery of these dynamically cured blends increased with the similarity of the rubber and plastic in respect to the critical surface tension for wetting and with the crystallinity of the plastic phase. Critical chain length of the rubber molecule, crystallinity of the hard phase (plastic), and the surface energy are a few of the parameters used in the analysis. Better results are obtained with a crystalline plastic material when the entanglement molecular length of the... [Pg.641]

Compatibility and various other properties such as morphology, crystalline behavior, structure, mechanical properties of natural rubber-polyethylene blends were investigated by Qin et al. [39]. Polyethylene-b-polyiso-prene acts as a successful compatibilizer here. Mechanical properties of the blends were improved upon the addition of the block copolymer (Table 12). The copolymer locates at the interface, and, thus, reduces the interfacial tension that is reflected in the mechanical properties. As the amount of graft copolymer increases, tensile strength and elongation at break increase and reach a leveling off. [Pg.644]

Wang and Chen [41] studied the compatibility problems of incompatible NBR-PVC blends. Poly(vinyl-idene chloride-covinyl chloride) is reported to act as an efficient interfacial agent. Blends of PVC, NBR, and the copolymer were prepared by the solution casting technique using THE as a solvent. Improvement in mechanical properties can be achieved in NBR-PVC blend by the addition of different types of rubbers [42]. Different rubbers include NR, styrene butadiene (SBR) and butadiene (BR). Replacement of a few percent of NBR by other rubbers will improve the mechanical properties and at the same time reduce the cost of the blend. [Pg.646]

Greco et al. [50] studied the effect of the reactive compatibilization technique in ethylene propylene rubber-polyamide-6 blends. Binary blends of polyamide-6-ethylene propylene rubber (EPR) and a ternary blend of polyamide-6-EPR-EPR-g-succinic anhydride were prepared by the melt mixing technique, and the influence of the degree of grafting of (EPR-g-SA) on morphology and mechanical properties of the blends was studied. [Pg.647]

The reactive extrusion of polypropylene-natural rubber blends in the presence of a peroxide (1,3-bis(/-butyl per-oxy benzene) and a coagent (trimethylol propane triacrylate) was reported by Yoon et al. [64]. The effect of the concentration of the peroxide and the coagent was evaiuated in terms of thermal, morphological, melt, and mechanical properties. The low shear viscosity of the blends increased with the increase in peroxide content initially, and beyond 0.02 phr the viscosity decreased with peroxide content (Fig. 9). The melt viscosity increased with coagent concentration at a fixed peroxide content. The morphology of the samples indicated a decrease in domain size of the dispersed NR phase with a lower content of the peroxide, while at a higher content the domain size increases. The reduction in domain size... [Pg.675]


See other pages where Rubbers mechanical properties is mentioned: [Pg.379]    [Pg.167]    [Pg.157]    [Pg.379]    [Pg.167]    [Pg.157]    [Pg.9]    [Pg.138]    [Pg.392]    [Pg.288]    [Pg.293]    [Pg.861]    [Pg.510]    [Pg.629]    [Pg.636]    [Pg.677]    [Pg.150]    [Pg.441]    [Pg.467]    [Pg.468]    [Pg.469]    [Pg.474]    [Pg.579]    [Pg.638]    [Pg.642]    [Pg.647]    [Pg.647]    [Pg.668]    [Pg.671]    [Pg.674]    [Pg.675]    [Pg.835]   
See also in sourсe #XX -- [ Pg.570 , Pg.571 ]




SEARCH



Conclusions on the Mechanical Properties of Rubbers

Filled rubbers, mechanical properties applications

Filled rubbers, mechanical properties state

Mechanical properties acrylonitrile-butadiene rubber

Mechanical properties butyl rubber

Mechanical properties filled rubbers

Mechanical properties natural rubber

Mechanical properties of filled rubbers

Mechanical properties of rubber

Mechanical properties of rubber vulcanizates

Mechanical properties rubber-toughened acrylic polymers

Mechanical properties styrene-butadiene rubber

Rubber Compounds with Special Mechanical Properties

Rubbers mechanism

© 2024 chempedia.info