Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mechanical nanocomposites

The stractural mechanism of polymer nano composites filled with organoclay on supra segmental level was offered. Within the frameworks of these mechanism nanocomposites elasticity modulus is defined by local order domains (nano clusters) sizes similarly to natural nano composites (polymers). Densely packed interfacial regions formation in nano composites at nano filler introduction is the physical basis of nano clusters size decreasing. [Pg.74]

FIGURE 5.1 Number of listed results as of June 2012 for ISI Web of Knowledge searches containing the topic strings shown. Nanotube title search string ranks either first or second for all applications listed (clay shows the largest number of listed results for mechanical nanocomposites and crystallization silica ranks first for optical nanocomposites). [Pg.136]

PLA/PCL-OMMT nano-composites were prepared effectively using fatty amides as clay modifier. The nano-composites shows increasing mechanical properties and thermal stability (Hoidy et al, 2010c). New biopolymer nano-composites were prepared by treatment of epoxidized soybean oil and palm oil, respectively plasticized PLA modified MMT with fatty nitrogen compounds. The XRD and TEM results confirmed the production of nanocomposites. The novelty of these studies is use of fatty nitrogen compoimds which reduces the dependence on petroleum-based surfactants (Al-Mulla et al., 2011 Al-Mulla et ah, 2011 Al- Mulla et ah, 2010c). [Pg.36]

Hoidy, W.H., Al-Mulla, E.A.J., and Al-Janabi, K.W. 2010c. Mechanical and thermal properties of PLLA/PCL modified clay nanocomposites. Journal of Polymers and the Environment. 18, 608-616. [Pg.38]

Fig. 4. Effect of nanocomposites on mechanical loss factor tan 8 vs temperature... Fig. 4. Effect of nanocomposites on mechanical loss factor tan 8 vs temperature...
Electrical conductivity measurements revealed that ionic conductivity of Ag-starch nanocomposites increased as a function of temperature (Fig.l7) which is an indication of a thermally activated conduction mechanism [40]. This behavior is attributed to increase of charge carrier (Ag+ ions) energy with rise in temperature. It is also foimd to increase with increasing concentration of Ag ion precursor (inset of Fig.l7). This potentiality can lead to development of novel biosensors for biotechnological applications such as DNA detection. [Pg.138]

This chapter is organised as follows Following this introduction as section 1, a brief description of the synthesis and characterisation techniques used for the as-synthesised polymer capped selenide nanopartides is given as section 2. In section 3, the mechanism of the reaction, results and discussion of the different selenide nanocomposites obtained using different polymers are given. Section 4, the last section gives a summary of the whole process, followed by references. Acknowledgements are cited before references. [Pg.166]

Diserens, M., Patscheider, J., and Levy, F., "Mechanical Properties and Oxidation Resistance of Nanocomposite TiN-SiN Physical-Vapor-Deposited Thin Films, Surf. Coat. Technol,Vol. 120 Ill, 1999,65. [Pg.165]

The data provided by Toyota Research Group of Japan on polyamide-MMT nanocomposites indicate tensile strength improvements of approximately 40%-50% at 23°C and modulus improvement of about 70% at the same temperature. Heat distortion temperature has been shown to increase from 65°C for the unmodified polyamide to 152°C for the nanoclay-modified material, all the above having been achieved with just a 5% loading of MMT clay. Similar mechanical property improvements were presented for polymethyl methacrylate-clay hybrids [27]. [Pg.34]

This is the most widely used naturally occurring rubber. The literature search shows that many research groups have prepared nanocomposites based on this rubber [29-32]. Varghese and Karger-Kocsis have prepared natural rubber (NR)-based nanocomposites by melt-intercalation method, which is very useful for practical application. In their study, they have found increase in stiffness, elongation, mechanical strength, and storage modulus. Various minerals like MMT, bentonite, and hectorite have been used. [Pg.34]

Literature search shows that epoxy-based nanocomposites have been prepared by many researchers [34-38]. Becker et al. have prepared nanocomposites based on various high-functionahty epoxies. The mechanical, thermal, and morphological properties were also investigated thoroughly [39 3]. The cure characteristics, effects of various compatibilizers, thermodynamic properties, and preparation methods [16,17,44 9] have also been reported. ENR contains a reactive epoxy group. ENR-organoclay nanocomposites were investigated by Teh et al. [50-52]. [Pg.35]

This mbber is very tacky in nature and contains acrylic group, which makes it polar in nature. Nanocomposites have been prepared based on this elastomer with a wide range of nanohllers. Layered silicates [53-55] have been used for this preparation. Sol-gel method [56,57], in situ polymerization [58], and nanocomposites based on different clays like bentonite [59] and mica [60] have been described. The mechanical, rheological, and morphological behaviors have been investigated thoroughly. [Pg.35]

This is a nonpolar rubber with very little unsamration. Nanoclays as well as nanotubes have been used to prepare nanocomposites of ethylene-propylene-diene monomer (EPDM) rubber. The work mostly covers the preparation and characterization of these nanocomposites. Different processing conditions, morphology, and mechanical properties have been smdied [61-64]. Acharya et al. [61] have prepared and characterized the EPDM-based organo-nanoclay composites by X-ray diffracto-gram (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy... [Pg.35]

ENGAGE is an ethylene-octene copolymer. Ray and Bhowmick [70] have prepared nanocomposites based on this copolymer. In this study, the nanoclay was modified in situ by polymerization of acrylate monomer inside the gallery gap of nanoclay. ENGAGE was then intercalated inside the increased gallery gap of the modified nanoclay. The nanocomposites prepared by this method have improved mechanical properties compared to that of the conventional counterparts. Preparation and properties of organically modified nanoclay and its nanocomposites with ethylene-octene copolymer were reported by Maiti et al. [71]. Excellent improvement in mechanical properties and storage modulus was noticed by the workers. The results were explained with the help of morphology, dispersion of the nanofiller, and its interaction with the mbber. [Pg.36]

Nanocomposite based on polyurethane (PU) is prepared using silica, clay, and Polyhedral Oligomeric Silsesquioxane (POSS). Preparation, characterization, mechanical and barrier properties, morphology, and effect of processing conditions have been reported on polyurethane-based nanocomposites [72,73]. [Pg.36]

Nanocomposites have been prepared with this polymer and mechanical and barrier properties and ffacmre behavior have been studied [74—76]. The latex of this mbber has also been used for the same [77]. Sadhu and Bhowmick [78-81] have studied the preparation, stmcmre, and various... [Pg.36]

FIGURE 2.10 Variation in mechanical properties with styrene content in styrene-butadiene rubber (SBR)-based nanocomposites. [Pg.39]

Maiti and Bhowmick reported exciting results that a polar matrix like fluoroelastomer (Viton B-50) was able to exfoliate unmodified clay (Cloisite NA ) as well as the modified one (Cloisite 20A) [93]. They studied morphology, mechanical, dynamic mechanical and swelling properties of fluoroelastomer nanocomposites. The unmodified-clay-filled systems showed better properties than the modified ones (Table 2.3). [Pg.39]

This is a highly polar polymer and crystalline due to the presence of amide linkages. To achieve effective intercalation and exfoliation, the nanoclay has to be modified with some functional polar group. Most commonly, amino acid treatment is done for the nanoclays. Nanocomposites have been prepared using in situ polymerization [85] and melt-intercalation methods [113-117]. Crystallization behavior [118-122], mechanical [123,124], thermal, and barrier properties, and kinetic study [125,126] have been carried out. Nylon-based nanocomposites are now being produced commercially. [Pg.46]

PP is probably the most thoroughly investigated system in the nanocomposite field next to nylon [127-132]. In most of the cases isotactic/syndiotactic-PP-based nanocomposites have been prepared with various clays using maleic anhydride as the compatibilizer. Sometimes maleic anhydride-grafted PP has also been used [127]. Nanocomposites have shown dramatic improvement over the pristine polymer in mechanical, rheological, thermal, and barrier properties [132-138]. Crystallization [139,140], thermodynamic behavior, and kinetic study [141] have also been done. [Pg.46]

Higher extent of silica generation with high TEOS concentration improves the mechanical properties severalfolds as illustrated by the tensile stress-strain plots on ACM-sdica hybrid nanocomposites on increasing TEOS concentrations in Figure 3.6. [Pg.64]

Different characteristics of solvents seriously affect the sol-gel reaction in solution. This in turn influences the physico-mechanical properties of the resultant rubber-silica hybrid composites. Bandyopadhyay et al. [34,35] have carried out extensive research on stmcture-property correlation in sol-gel-derived rubber-sihca hybrid nanocomposites in different solvents with both chemically interactive (ENR) and noninteractive (ACM) mbber matrices. Figure 3.12 demonstrates the morphology of representative ACM-sihca and ENR-sihca hybrid composites prepared from various solvents. In all the instances, the concentration of TEOS (45 wt%), TEOS/H2O mole ratio (1 2), pH (1.5), and the gelling temperature (ambient condition) were kept unchanged. [Pg.69]

Finer dispersion of silica in THF provides higher surface area to interact with the rubber molecules and the resultant nanocomposites show better mechanical properties than their macrocounterparts. Figure 3.13 illustrates these results. [Pg.71]

Adsorption of rubber over the nanosilica particles alters the viscoelastic responses. Analysis of dynamic mechanical properties therefore provides a direct clue of the mbber-silica interaction. Figure 3.22 shows the variation in storage modulus (log scale) and tan 8 against temperature for ACM-silica, ENR-silica, and in situ acrylic copolymer and terpolymer-silica hybrid nanocomposites. [Pg.77]

This fantastic property of mechanical strength allows these structures to be used as possible reinforcing materials. Just like current carbon hber technology, this nanotube reinforcement would allow very strong and light materials to be produced. These properties of CNTs attracted the attention of scientists all over the world because of their high capability for absorbing the load which is applied to nanocomposites [23-25]. [Pg.92]

Chemical pretreatments with amines, silanes, or addition of dispersants improve physical disaggregation of CNTs and help in better dispersion of the same in rubber matrices. Natural rubber (NR), ethylene-propylene-diene-methylene rubber, butyl rubber, EVA, etc. have been used as the rubber matrices so far. The resultant nanocomposites exhibit superiority in mechanical, thermal, flame retardancy, and processibility. George et al. [26] studied the effect of functionalized and unfunctionalized MWNT on various properties of high vinyl acetate (50 wt%) containing EVA-MWNT composites. Figure 4.5 displays the TEM image of functionalized nanombe-reinforced EVA nanocomposite. [Pg.92]

Dynamic mechanical properties of the nanocomposites are shown in Figure 4.6. There is 10% improvement of the storage modulus at 20°C by incorporating only 4 wt% of the nanombe. [Pg.92]


See other pages where Mechanical nanocomposites is mentioned: [Pg.204]    [Pg.300]    [Pg.204]    [Pg.300]    [Pg.399]    [Pg.36]    [Pg.126]    [Pg.128]    [Pg.157]    [Pg.159]    [Pg.161]    [Pg.165]    [Pg.166]    [Pg.25]    [Pg.34]    [Pg.37]    [Pg.38]    [Pg.38]    [Pg.40]    [Pg.44]    [Pg.45]    [Pg.46]    [Pg.47]    [Pg.49]    [Pg.49]    [Pg.85]   
See also in sourсe #XX -- [ Pg.117 ]




SEARCH



Biodegradable polymer nanocomposite mechanical properties

Clay-polymer nanocomposites dynamic mechanical analysis

Considerations Regarding Specific Impacts of the Principal Fire Retardancy Mechanisms in Nanocomposites

Dynamic mechanical analysis nanocomposites

Dynamic mechanical measurements nanocomposites

Dynamic mechanical nanocomposites

Dynamic mechanical thermal analysis nanocomposite

Elastomer nanocomposites mechanism

Epoxy nanocomposites mechanical properties

Flame Retardant Mechanism of Polymer-Clay Nanocomposites

Improving the mechanical properties of polymer nanocomposites

Mechanical Performance of PDMS Nanocomposites

Mechanical properties clay-acrylate nanocomposite

Mechanical properties of nanocomposites

Mechanical properties polymer-organoclay nanocomposites

Mechanical properties polymer/graphite nanocomposites

Mechanical properties polypropylene nanocomposites

Mechanical properties polystyrene/clay nanocomposites

Mechanical reinforcement, nanocomposite

Mechanical reinforcement, nanocomposite morphology

Mechanical, electrical and other properties of nanocomposite fibres

Mechanical-Viscoelastic Characterization in Nanocomposites

Mechanically adaptive nanocomposites

Nanocomposite formation mechanical property improvements

Nanocomposite mechanical properties

Nanocomposite with oriented mechanical properties

Nanocomposites mechanical behavior, factors

Nanocomposites mechanical behavior, factors affecting

Nanocomposites mechanical failure

Nanocomposites mechanical properties

Nanocomposites mechanical reinforcement

Nanocomposites under static loading, mechanical

Nanocomposites, characterization mechanical properties

PMMA/CNTs nanocomposites mechanical properties

Polyimide nanocomposites mechanical properties

Polymer clay nanocomposites mechanical properties

Polymer nanocomposites mechanical properties

Polymer-organoclay nanocomposites flame retardant mechanism

Polysiloxane nanocomposites mechanisms

Reaction mechanism of nanocomposite fibers

Rubber nanocomposites toughening mechanism

© 2024 chempedia.info