Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymer nanocomposites mechanical properties

Keywords Nanodiamonds, carbon nanotubes, graphene, functionalization, polymer nanocomposites, mechanical properties, tribological properties... [Pg.347]

Mechanical properties represent a very important part of polymer materials characteristics, particularly if the talk is about their application as engineering materials. Nevertheless, even if the indicated materials have another functional assignment, mechanical properties remain always-practical application important factor in this case as well. Particulate-filled polymer nanocomposites mechanical properties have a specific features number, which will be considered below. [Pg.366]

Koo and co-workers [78] attempted to develop polyamides 11 and 12 with enhanced flame retardancy and thermal and mechanical properties by the incorporation of montmorillonite clays, silica and carbon fibre-polymer nanocomposites. Flammability properties of the nanocomposites were compared with those of the virgin polyamides, using cone calorimetry with an external heat flux of 50 kW/m. Cone calorimetry was also used in an evaluation of polyamide 6 - anion modified Mg/Al interlayer formulation [79]. The data from the cone calorimeter shows that the heat production rate (HPR) and mass loss weight of the sample with 5 wt% MgAl(H-DS) decrease considerably to 664 kW/mVs and 0.161 g/mVs from 1064 kW/mVs and 0.252 g/mVs... [Pg.90]

Nanocomposites have been prepared with this polymer and mechanical and barrier properties and ffacmre behavior have been studied [74—76]. The latex of this mbber has also been used for the same [77]. Sadhu and Bhowmick [78-81] have studied the preparation, stmcmre, and various... [Pg.36]

PP is probably the most thoroughly investigated system in the nanocomposite field next to nylon [127-132]. In most of the cases isotactic/syndiotactic-PP-based nanocomposites have been prepared with various clays using maleic anhydride as the compatibilizer. Sometimes maleic anhydride-grafted PP has also been used [127]. Nanocomposites have shown dramatic improvement over the pristine polymer in mechanical, rheological, thermal, and barrier properties [132-138]. Crystallization [139,140], thermodynamic behavior, and kinetic study [141] have also been done. [Pg.46]

Recent demands for polymeric materials request them to be multifunctional and high performance. Therefore, the research and development of composite materials have become more important because single-polymeric materials can never satisfy such requests. Especially, nanocomposite materials where nanoscale fillers are incorporated with polymeric materials draw much more attention, which accelerates the development of evaluation techniques that have nanometer-scale resolution." To date, transmission electron microscopy (TEM) has been widely used for this purpose, while the technique never catches mechanical information of such materials in general. The realization of much-higher-performance materials requires the evaluation technique that enables us to investigate morphological and mechanical properties at the same time. AFM must be an appropriate candidate because it has almost comparable resolution with TEM. Furthermore, mechanical properties can be readily obtained by AFM due to the fact that the sharp probe tip attached to soft cantilever directly touches the surface of materials in question. Therefore, many of polymer researchers have started to use this novel technique." In this section, we introduce the results using the method described in Section 21.3.3 on CB-reinforced NR. [Pg.597]

It is necessary to disperse the nanomaterials in the best possible manner, especially those layered structures such as graphite, graphene or clays. It is important to obtain very thin (ca. one nanometer) and very wide (ca. 500 nanometers) nanostructures dispersed in the polymer matrices to achieve optimal gas permeability and to improve their mechanical properties without affecting structural quality, using a small amount of the nanomaterial. The particle orientation also has an important effect on the properties of the nanocomposite. Nanoparticles need to be dispersed within the polymer so that are parallel to the material s surface. This condition ensures a maximum tor-... [Pg.84]

A polymer electrolyte with acceptable conductivity, mechanical properties and electrochemical stability has yet to be developed and commercialized on a large scale. The main issues which are still to be resolved for a completely successful operation of these materials are the reactivity of their interface with the lithium metal electrode and the decay of their conductivity at temperatures below 70 °C. Croce et al. found an effective approach for reaching both of these goals by dispersing low particle size ceramic powders in the polymer electrolyte bulk. They claimed that this new nanocomposite polymer electrolytes had a very stable lithium electrode interface and an enhanced ionic conductivity at low temperature. combined with good mechanical properties. Fan et al. has also developed a new type of composite electrolyte by dispersing fumed silica into low to moderate molecular weight PEO. [Pg.202]

The effect of polymer-filler interaction on solvent swelling and dynamic mechanical properties of the sol-gel-derived acrylic rubber (ACM)/silica, epoxi-dized natural rubber (ENR)/silica, and polyvinyl alcohol (PVA)/silica hybrid nanocomposites was described by Bandyopadhyay et al. [27]. Theoretical delineation of the reinforcing mechanism of polymer-layered silicate nanocomposites has been attempted by some authors while studying the micromechanics of the intercalated or exfoliated PNCs [28-31]. Wu et al. [32] verified the modulus reinforcement of rubber/clay nanocomposites using composite theories based on Guth, Halpin-Tsai, and the modified Halpin-Tsai equations. On introduction of a modulus reduction factor (MRF) for the platelet-like fillers, the predicted moduli were found to be closer to the experimental measurements. [Pg.7]

Choudhury et al. [86] have studied the effect of polymer-solvent and clay-solvent interaction on the mechanical properties of the HNBR/sepiolite nanocomposites. They chose nine different sets of solvent composition and found that chloroform/methyl ethyl ketone (Qi/MEK) (i.e., HNBR dissolved in Ch and sepio-lite dissolved in MEK) is the best solvent combination for improvement in mechanical properties. XRD, AFM, , and UV-vis spectroscopy studies show that the dispersion of clay is best in the Ch/MEK solvent combination and hence polymer-filler interaction is also the highest. images shown in Fig. 14a, b clearly elucidate the aforementioned phenomena. Consequently, the tensile strength and modulus are found to be higher (5.89 MPa and 1.50 MPa, respectively) for the Ch/MEK system due to the minimum difference in interaction parameter of HNBR-solvent (xab) and sepiolite-solvent (Xcd)- Choudhury et al. have also studied the effect of different nanoclays [NA, , 15A, and sepiolite (SP)] and nanosilica (Aerosil 300) on the mechanical properties of HNBR [36]. The tensile... [Pg.31]

The mechanism for improvement in mechanical properties of the hybrids has been explained. The effect of acrylic copolymer and terpolymer composition on the properties of in situ polymer/silica hybrid nanocomposites has been further studied by Patel et al. [145]. They have observed that terpolymer-silica hybrids demonstrate superior mechanical properties compared to the copolymer-silica hybrids. [Pg.36]


See other pages where Polymer nanocomposites mechanical properties is mentioned: [Pg.83]    [Pg.151]    [Pg.258]    [Pg.302]    [Pg.147]    [Pg.329]    [Pg.142]    [Pg.31]    [Pg.130]    [Pg.236]    [Pg.418]    [Pg.323]    [Pg.13]    [Pg.36]    [Pg.25]    [Pg.37]    [Pg.85]    [Pg.92]    [Pg.655]    [Pg.670]    [Pg.66]    [Pg.4]    [Pg.17]    [Pg.20]    [Pg.26]    [Pg.151]    [Pg.670]    [Pg.684]    [Pg.204]    [Pg.101]    [Pg.102]    [Pg.103]    [Pg.179]    [Pg.179]    [Pg.154]    [Pg.157]    [Pg.26]    [Pg.27]    [Pg.37]    [Pg.38]   
See also in sourсe #XX -- [ Pg.89 , Pg.90 , Pg.91 , Pg.92 , Pg.93 , Pg.94 , Pg.95 , Pg.96 , Pg.97 , Pg.98 , Pg.99 ]




SEARCH



Biodegradable polymer nanocomposite mechanical properties

Improving the mechanical properties of polymer nanocomposites

Mechanical nanocomposites

Mechanical properties polymer-organoclay nanocomposites

Mechanical properties polymer/graphite nanocomposites

Nanocomposite property

Nanocomposites properties

Polymer clay nanocomposites mechanical properties

Polymer mechanical

Polymer mechanism

© 2024 chempedia.info