Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mechanical intrusion

A mass of evidence seems to confirm that the mixing rate of radiocarbon in the atmosphere is rapid, and that with respect to its radiocarbon content the atmosphere can be considered as a homogeneous entirety. The contamination of samples with matter from an extraneous source can nevertheless invalidate this assumption. Two types of contamination can be differentiated physicochemical contamination and mechanical intrusion. There are two forms of physicochemical contamination. One is due to the dilution of the concentration of radiocarbon in the atmosphere by very old carbon, practically depleted of radiocarbon, released by the combustion of fossil fuel, such as coal and oil. The other is by the contamination with radiocarbon produced by nuclear bomb tests during the 1950s and later in the twentieth century. The uncertainties introduced by these forms of contamination complicate the interpretation of data obtained by the radiocarbon dating method and restrict its accuracy and the effective time range of dating. [Pg.310]

Mechanical intrusion is the penetration of the matter to be dated by carbon of a different age from that of the sample itself if not taken into account, mechanical intrusion, too, leads to erroneous ages. The penetration of rootlets from growing plants into buried specimens, the infiltration of windblown organic matter, and the accidental insertion of fibers from brushes or other instruments used to clean a sample are examples of likely modern carbon intrusions into prospective samples, which lead to assigning to a sample later dates than the true ones old carbon intrusions, such as those caused by the penetration of carbonate minerals from groundwater, or of petrol or oil from excavating tools, on the other hand, are conducive to assigning earlier dates than the true ones. [Pg.310]

Overall, the technical complexity of the Deans switch system is considerably greater than that of a mechanical switching valve and it is accepted that reliability and ease of use is reduced as the system complexity increases. For many compound types, however, the completely non-intrusive nature of the Deans method offers sufficient advantages to justify its application. However, the use of modern electronic pressure and flow controls integrated into the overall computer control of the chromatographic system does now make the operation of Deans switches significantly easier or more reliable than has been reported in its earlier applications. [Pg.55]

To ensure that the water flows through the whole of the system as smoothly as possible and with the minimum of turbulence, it is vital that the layout of pipework should be planned before fabrication starts. It should not be the result of haphazard improvisation to avoid more and more obstacles as construction proceeds. Pipe runs should be minimised or run as directly as possible with every effort made to avoid features that might act as turbulence raisers. For this reason the number of flow controllers, process probes, bends, branches, valves, flanges, intrusive fittings, or mechanical deformation or damage to the pipework, should be kept to a minimum. [Pg.73]

A plausible mechanism for the erosion of devices that contain Mg(OH)2 is shown in Fig. 14 (2). According to this mechanism, the base stabilizes the interior of the device and erosion can only occur in the surface layers where the base has been eluted or neutralized. This is believed to occur by water intrusion into the matrix and diffusion of the slightly water-soluble basic excipient out of the device where it is neutralized by the external buffer. Polymer erosion then occurs in the base-depleted layer. [Pg.140]

In general, the cleanup of oiled shorelines has been by mechanical, labor-intensive means. The use of surfactants to deterge and lift the oil from the surface results in more complete and rapid cleaning. Not only is the cleaning process more efficient, but it can also be less environmentally damaging because potentially less human intrusion and stress on the biologic community occurs and because the chemicals can make the washing more effective at a lower temperature. [Pg.308]

Preliminary research has shown that Brillouin fiber-optic sensing systems provide a possible method to detect leaks and third-party intrusion on a pipeline over distances of 25 km or more. Their intrinsic response to both temperature and mechanical strain allows for the separation of these parameters and the detection of anomalies in the scan profiles. In addition, the same sensor could be integrated into the pipeline system to detect possible ground movement relative to fixed reference points. Limited test results on surface loads associated with the intrusion of vehicles and people on a pipeline have demonstrated the sensitivity of the system and its ability to discriminate loads at different soil depths. [Pg.366]

Ideally, in a perfect world, all chemical facilities would be secured in a layered fashion (aka the barrier approach). Layered security systems are vital. Using the protection in-depth principle, requiring that an adversary defeat several protective barriers or security layers to accomplish its goal, chemical industry infrastructure can be made more secure. Protection in depth is a term commonly used by the military to describe security measures that reinforce one another, masking the defense mechanisms from the view of intruders, and allowing the defender time to respond to intrusion or attack. [Pg.154]

Several different technologies have been used to develop manhole intrusion sensors, including mechanical systems, magnetic systems, and fiber optic and infrared sensors. Some of these intrusion sensors have been specifically designed for manholes, while others consist of standard, off-the-shelf intrusion sensors that have been implemented in a system specifically designed for application in a manhole. [Pg.191]

Network intrusion detection systems employ a variety of mechanisms to evaluate potential threats. The types of search and detection mechanisms are dependent upon the level of sophistication of the system. Some of the available detection methods include the following ... [Pg.211]

The differences of the intrusion and extrusion mechanisms are the main factors, leading to the different pathways (hysteresis) of the branches in Fig. 1.16A. Furthermore, this effect causes the pore size distribution obtained from the intrusion curve to be incorrectly shifted towards smaller pore sizes. Unlike some inorganic materials of very regular pore structure (e.g. zeolites), permanently porous organic polymers consist of a very complex network of pores of different sizes connected to each other. Correction of these falsifications in the results described above is virtually impossible, since it implies a detailed understanding of the network. [Pg.26]

For the reasons stated above, deep intrusion of degrading microbes into polysaccharide-plastic films is demonstrably and theoretically improbable. Since starch removal does occur when the films are buried in soil, the primary mechanism must be microbial production of amylase in or near a pore, diffusion of the enzyme into pores and diffusion of soluble digestion products back to the surface where they are metabolized (Figure 3). This mechanism would be the only choice when the pore diameter is too small to admit a microbial cell (i.e., at diameters < 0.5 /im). An alternative mechanism could be diffusion of a water-soluble polysaccharide to the film surface, at which point degradation would occur. None of the materials used in these investigations showed loss of starch even when soaked in water for extended periods with microbial inhibitors present. Therefore, diffusion of amylase to the substrate rather than diffusion of the substrate to the film surface is the more likely mechanism. [Pg.83]

A common feature to both intrusive and non-intrusive mechanisms of attack is that decay can be initiated only from the surface, a conclusion from which three correlaries can be derived (1) The decay rate ultimately depends on the percentage of surface area consisting of degradable material ... [Pg.85]

Houcine et al. (64) used a non-intrusive laser-induced fluorescence method to study the mechanisms of mixing in a 20 dm CSTR with removable baffles, a conical bottom, a mechanical stirrer, and two incoming liquid jet streams. Under certain conditions, they observed an interaction between the flow induced by the stirrer and the incoming jets, which led to oscillations of the jet stream with a period of several seconds and corresponding switching of the recirculation flow between several metastable macroscopic patterns. These jet feedstream oscillations or intermittencies could strongly influence the kinetics of fast reactions, such as precipitation. The authors used dimensional analysis to demonstrate that the intermittence phenomenon would be less problematic in larger CSTRs. [Pg.120]

Sleep, after all, is a state associated with dreaming, but waking is not. Even though the mechanism is likely the same in both cases, a failure to achieve a simultaneous and fully synchronous change in all of the components of consciousness that constitute states, we more easily accept sleep intrusions into waking at the exit portal. [Pg.157]

The feldspars crystallize from the magma in both extrusive and intrusive rocks they occur as contact minerals in veins, and they are developed in many sorts of tnelamorphic rocks, e g., albile schists. They may also he found as mechanical deposits in various sedimentary nicks. [Pg.607]


See other pages where Mechanical intrusion is mentioned: [Pg.285]    [Pg.1812]    [Pg.285]    [Pg.1812]    [Pg.1290]    [Pg.121]    [Pg.133]    [Pg.101]    [Pg.17]    [Pg.19]    [Pg.70]    [Pg.117]    [Pg.24]    [Pg.55]    [Pg.389]    [Pg.286]    [Pg.116]    [Pg.225]    [Pg.241]    [Pg.244]    [Pg.147]    [Pg.19]    [Pg.248]    [Pg.190]    [Pg.275]    [Pg.574]    [Pg.903]    [Pg.211]    [Pg.212]    [Pg.71]    [Pg.22]    [Pg.37]    [Pg.46]    [Pg.317]   
See also in sourсe #XX -- [ Pg.285 ]

See also in sourсe #XX -- [ Pg.285 ]




SEARCH



© 2024 chempedia.info