Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bubble columns mass transfer

K. H. Reichert and R. Michael, "Polymerization iu Bubble Columns, Problems of Mass and Heat Transfer at High SoHd Contents," Inst. Chem. [Pg.530]

Direct Chlorination of Ethylene. Direct chlorination of ethylene is generally conducted in Hquid EDC in a bubble column reactor. Ethylene and chlorine dissolve in the Hquid phase and combine in a homogeneous catalytic reaction to form EDC. Under typical process conditions, the reaction rate is controlled by mass transfer, with absorption of ethylene as the limiting factor (77). Ferric chloride is a highly selective and efficient catalyst for this reaction, and is widely used commercially (78). Ferric chloride and sodium chloride [7647-14-5] mixtures have also been utilized for the catalyst (79), as have tetrachloroferrate compounds, eg, ammonium tetrachloroferrate [24411-12-9] NH FeCl (80). The reaction most likely proceeds through an electrophilic addition mechanism, in which the catalyst first polarizes chlorine, as shown in equation 5. The polarized chlorine molecule then acts as an electrophilic reagent to attack the double bond of ethylene, thereby faciHtating chlorine addition (eq. 6) ... [Pg.417]

Gas Handling. The reactants are often gaseous under ambient conditions. To maximize the rate of the catalytic reaction, it is often necessary to minimize the resistance to gas—Uquid mass transfer, and the gases are therefore introduced as swarms of bubbles into a weU-stirred Hquid or into devices such as packed columns that faciHtate gas—Hquid mixing and gas absorption. [Pg.161]

Example 8 Calculation of Rate-Based Distillation The separation of 655 lb mol/h of a bubble-point mixture of 16 mol % toluene, 9.5 mol % methanol, 53.3 mol % styrene, and 21.2 mol % ethylbenzene is to be earned out in a 9.84-ft diameter sieve-tray column having 40 sieve trays with 2-inch high weirs and on 24-inch tray spacing. The column is equipped with a total condenser and a partial reboiler. The feed wiU enter the column on the 21st tray from the top, where the column pressure will be 93 kPa, The bottom-tray pressure is 101 kPa and the top-tray pressure is 86 kPa. The distillate rate wiU be set at 167 lb mol/h in an attempt to obtain a sharp separation between toluene-methanol, which will tend to accumulate in the distillate, and styrene and ethylbenzene. A reflux ratio of 4.8 wiU be used. Plug flow of vapor and complete mixing of liquid wiU be assumed on each tray. K values will be computed from the UNIFAC activity-coefficient method and the Chan-Fair correlation will be used to estimate mass-transfer coefficients. Predict, with a rate-based model, the separation that will be achieved and back-calciilate from the computed tray compositions, the component vapor-phase Miirphree-tray efficiencies. [Pg.1292]

The choice of a bubble column or an agitated vessel depends primarily on the solubihty of the gas in the liquid, the corrosiveness of the liquid (often a gas compressor can be made of inexpensive material, whereas a mechanical agitator may have to be made of exotic, expensive materials), and the rate of chemical reac tion as compared with the mass-transfer rate. Bubble columns and agitated vessels are seldom used for gas absorption except in chemical reac tors. As a general rule. [Pg.1424]

Mass Transfer Mass transfer in plate and packed gas-liquid contactors has been covered earHer in this subsection. Attention nere will be limited to deep-bed contactors (bubble columns and agitated vessels). Theory underlying mass transfer between phases is discussed in Sec. 5 of this handbook. [Pg.1425]

Sada, E., Kumazawa, H., Lee, C. and Fujiwara, N., 1985. Gas-liquid mass transfer characteristics in a bubble column with suspended sparingly soluble fine particles. Industrial and Engineering Chemistry Process Design and Development, 24, 255-261. [Pg.321]

Hydrodynamics and mass transfer in bubble columns are dependent on the bubble size and the bubble velocity. As the bubble is released from the sparger, it comes into contact with media and microorganisms in the column. In sugar fermentation, glucose is converted to ethanol and carbon dioxide ... [Pg.294]

Only one publication on gas-liquid mass transfer in bubble-column slurry reactors has come to the author s attention. However, a relatively large volume of information regarding mass transfer between single bubbles or bubble swarms and pure liquid containing no suspended solids is available, and this information is probably of some relevance to the analysis of systems... [Pg.109]

It is concluded that gas bubble-columns exhibit mass-transfer rates of the same order of magnitude as packed columns at low liquid flow rates, and much higher mass-transfer rates at high liquid flow rates. The pressure drop across a bubble-column is much greater than that across packed columns of the same height. [Pg.111]

Among the more recent publications on mass transfer in bubble-columns, the following may be mentioned ... [Pg.112]

Yoshida and Akita (Yl) determined volumetric mass-transfer coefficients for the absorption of oxygen by aqueous sodium sulfite solutions in counter-current-ffow bubble-columns. Columns of various diameters (from 7.7 to 60.0 cm) and liquid heights (from 90 to 350 cm) were used in order to examine the effects of equipment size. The volumetric absorption coefficient reportedly increases with increasing gas velocity over the entire range investigated (up to approximately 30 cm/sec nominal velocity), and with increasing column diameter, but is independent of liquid height. These observations are somewhat at variance with those of other workers. [Pg.113]

Yoshitome et al. (Y2) examined mass transfer from single samples of benzoic acid suspended in an air-water bubble-column. Spherical, cylindrical, and disk-shaped samples of diameters from 25 to 75 mm were used,... [Pg.113]

The mass-transfer rates obtainable across the gas-liquid interface are of nearly the same magnitude in the different operations. Bubble-column slurries exhibit rather higher transfer rates than conventional packed columns... [Pg.130]

Example 11.8 With highly reactive absorbents, the mass transfer resistance in the gas phase can be controlling. Determine the number of trays needed to reduce the CO2 concentration in a methane stream from 5% to 100 ppm (by volume), assuming the liquid mass transfer and reaction steps are fast. A 0.9-m diameter column is to be operated at 8 atm and 50°C with a gas feed rate of 0.2m /s. The trays are bubble caps operated with a 0.1-m liquid level. Literature correlations suggest = 0.002 m/s and A, = 20m per square meter of tray area. [Pg.395]

Fig. 26. Reference floe diameter of floe particle system versus mass transfer coefficient kpa for bubble columns with different gas spargers H = 1.08 m D = 0.4 m... Fig. 26. Reference floe diameter of floe particle system versus mass transfer coefficient kpa for bubble columns with different gas spargers H = 1.08 m D = 0.4 m...
Bubble columns and mechanically stirred reactors are the most common reactor types for slurry systems in laboratories, but they have many disadvantages from an industrialization perspective. Mechanically stirred reactors usually used for laboratorial studies are difficult to scale-up. In order to achieve good mixing and mass transfer between the gas and slurry phases, bubble column must be operated at a high space velocity, which leads to a relative low one-through conversion of the syngas. [Pg.490]

Airlift loop reactor (ALR), basically a specially structured bubble column, has been widely used in chemical industry, biotechnology and environmental protection, due to its high efficiency in mixing, mass transfer, heat transfer etc [1]. In these processes, multiple reactions are commonly involved, in addition to their complicated aspects of mixing, mass transfer, and heat transfer. The interaction of all these obviously affects selectivity of the desired products [2]. It is, therefore, essential to develop efficient computational flow models to reveal more about such a complicated process and to facilitate design and scale up tasks of the reactor. However, in the past decades, most involved studies were usually carried out in air-water system and the assumed reactor constructions were oversimplified which kept itself far away from the real industrial conditions [3] [4]. [Pg.525]

GL 22] [R 3] [R 9] [R 10] [P 23] The mass transfer efficiency of different gas/liquid contactors as a function of residence time was compared qualitatively (Figure 5.29), including an interdigital micro mixer, a caterpillar mini mixer, a mixing tee and three micro bubble columns using micro channels of varying diameter [5]. [Pg.639]

The parameter p (= 7(5 ) in gas-liquid sy.stems plays the same role as V/Aex in catalytic reactions. This parameter amounts to 10-40 for a gas and liquid in film contact, and increases to lO -lO" for gas bubbles dispersed in a liquid. If the Hatta number (see section 5.4.3) is low (below I) this indicates a slow reaction, and high values of p (e.g. bubble columns) should be chosen. For instantaneous reactions Ha > 100, enhancement factor E = 10-50) a low p should be selected with a high degree of gas-phase turbulence. The sulphonation of aromatics with gaseous SO3 is an instantaneous reaction and is controlled by gas-phase mass transfer. In commercial thin-film sulphonators, the liquid reactant flows down as a thin film (low p) in contact with a highly turbulent gas stream (high ka). A thin-film reactor was chosen instead of a liquid droplet system due to the desire to remove heat generated in the liquid phase as a result of the exothermic reaction. Similar considerations are valid for liquid-liquid systems. Sometimes, practical considerations prevail over the decisions dictated from a transport-reaction analysis. Corrosive liquids should always be in the dispersed phase to reduce contact with the reactor walls. Hazardous liquids are usually dispensed to reduce their hold-up, i.e. their inventory inside the reactor. [Pg.388]


See other pages where Bubble columns mass transfer is mentioned: [Pg.251]    [Pg.54]    [Pg.335]    [Pg.169]    [Pg.170]    [Pg.198]    [Pg.604]    [Pg.1292]    [Pg.1420]    [Pg.1424]    [Pg.1424]    [Pg.1424]    [Pg.1426]    [Pg.2115]    [Pg.474]    [Pg.54]    [Pg.498]    [Pg.149]    [Pg.110]    [Pg.112]    [Pg.113]    [Pg.113]    [Pg.621]    [Pg.403]    [Pg.37]    [Pg.86]    [Pg.641]    [Pg.265]    [Pg.268]    [Pg.292]   
See also in sourсe #XX -- [ Pg.122 , Pg.123 ]




SEARCH



Bubble columns

Bubble mass transfer

Bubble transfer

Mass bubble column

Mass columns

© 2024 chempedia.info