Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mass array

Techniques PCR (polymerase chain reaction) mass arrays (Sequenom.com)... [Pg.246]

Figure 10.3. Mass array, (a) Primer binding (b) primer extension enzyme, ddATP and dCTP/ dGTP/dTTP addition (c) primer terminates (d) primer extension products ready for MALDI-MS (e) MS spectrum of primer extension products. Each addition of a nucleotide to the primer extension product increases the mass by 289 to 329 Da, depending on the nucleotide added. The mass difference is easily resolved by MALDI-TOF, which has the ability to detect differences as small as 3 Da. Printed by kind permission of Sequenom. (See color insert.)... Figure 10.3. Mass array, (a) Primer binding (b) primer extension enzyme, ddATP and dCTP/ dGTP/dTTP addition (c) primer terminates (d) primer extension products ready for MALDI-MS (e) MS spectrum of primer extension products. Each addition of a nucleotide to the primer extension product increases the mass by 289 to 329 Da, depending on the nucleotide added. The mass difference is easily resolved by MALDI-TOF, which has the ability to detect differences as small as 3 Da. Printed by kind permission of Sequenom. (See color insert.)...
Another important set of multiplexed assays monitor mRNA transcript levels. The expression level of all the genes involved in a known signal transduction pathway or other selective genes can be monitored simultaneously as a way of following compound effects on a cell. The current technologies for multiple mRNA detection include quantitative reverse transcriptional PCR (qRT-PCR), qNPA (quantitative nuclease protection assays), mass array assay technologies and branched DNA detection on Luminex beads (Panomics). The applications of such multiplexed in vitro and cell-based detection systems should provide more predicative information in hit finding and lead characterisation. [Pg.261]

A very promising tool in combination with Mass ARRAY is the analysis of allelic frequencies by means of pooled DNA samples. In this approach a significant number of different genomic DNA samples (e.g. 100 individual DNAs) are combined in equimolar amounts to generate a DNA pool. This pooled population is subjected to PCR amplification and analyzed in a single MassEXTEND reaction. If carefully analyzed, the outcome of such an experiment is information about the... [Pg.70]

Mass Array MALDI TOE MS Primer extension Mass spectrometry 49... [Pg.99]

MHPD) 1762 Marogen 472 Mass Array 84 Mass spectrometry (MS) 1564... [Pg.1866]

Isotope ratio precisions for a 10 ng/mL Ag solution for measurement times of 1 ms to 9000 s were found to improve with a square-root dependence on integration time to a value of as good as 0.007%, this being two orders of magnitude better than with an electron multiplier scanning on the same spectrometer [95]. This shows that the approach of mass array detectors really is promising for isotope ratio work. [Pg.84]

The periodic table is the most important chemistry reference there is. It arranges all the known elements in an informative array. Elements are arranged left to right and top to bottom in order of increasing atomic number.. This order generally coincides with increasing atomic mass... [Pg.219]

Measurements are made using appropriate equipment or instruments. The array of equipment and instrumentation used in analytical chemistry is impressive, ranging from the simple and inexpensive, to the complex and costly. With two exceptions, we will postpone the discussion of equipment and instrumentation to those chapters where they are used. The instrumentation used to measure mass and much of the equipment used to measure volume are important to all analytical techniques and are therefore discussed in this section. [Pg.25]

In one instrument, ions produced from an atmospheric-pressure ion source can be measured. If these are molecular ions, their relative molecular mass is obtained and often their elemental compositions. Fragment ions can be produced by suitable operation of an APCI inlet to obtain a full mass spectrum for each eluting substrate. The system can be used with the effluent from an LC column or with a solution from a static solution supply. When used with an LC column, any detectors generally used with the LC instrument itself can still be included, as with a UV/visible diode array detector sited in front of the mass spectrometer inlet. [Pg.167]

Other types of mass spectrometer may use point, array, or both types of collector. The time-of-flight (TOF) instrument uses a special multichannel plate collector an ion trap can record ion arrivals either sequentially in time or all at once a Fourier-transform ion cyclotron resonance (FTICR) instrument can record ion arrivals in either time or frequency domains which are interconvertible (by the Fourier-transform technique). [Pg.201]

There are two common occasions when rapid measurement is preferable. The first is with ionization sources using laser desorption or radionuclides. A pulse of ions is produced in a very short interval of time, often of the order of a few nanoseconds. If the mass spectrometer takes 1 sec to attempt to scan the range of ions produced, then clearly there will be no ions left by the time the scan has completed more than a few nanoseconds (ion traps excluded). If a point ion detector were to be used for this type of pulsed ionization, then after the beginning of the scan no more ions would reach the collector because there would not be any left The array collector overcomes this difficulty by detecting the ions produced all at the same instant. [Pg.209]

A second use of arrays arises in the detection of traces of material introduced into a mass spectrometer. For such very small quantities, it may well be that the tiny amount of substance will have disappeared by the time a scan has been has been completed by a mass spectrometer equipped... [Pg.209]

In modem mass spectrometry, ion collectors (detectors) are generally based on the electron multiplier and can be separated into two classes those that detect the arrival of all ions sequentially at a point (a single-point ion collector) and those that detect the arrival of all ions simultaneously (an array or multipoint collector). This chapter compares the uses of single- and multipoint ion collectors. For more detailed discussions of their construction and operation, see Chapter 28, Point Ion Collectors (Detectors), and Chapter 29, Array Collectors (Detectors). In some forms of mass spectrometry, other methods of ion detection can be used, as with ion cyclotron instmments, but these are not considered here. [Pg.211]

Other types of mass spectrometer can use point, array, or both types of ion detection. Ion trap mass spectrometers can detect ions sequentially or simultaneously and in some cases, as with ion cyclotron resonance (ICR), may not use a formal electron multiplier type of ion collector at all the ions can be detected by their different electric field frequencies in flight. [Pg.212]

Another form of array is called a microchannel plate detector. A time-of-flight (TOP) mass spectrometer collects ions sequentially in time and can use a point detector, but increasingly, the TOP instrument uses a microchannel plate, most particularly in an orthogonal TOP mode. Because the arrays and microchannel plates are both essentially arrays or assemblies of small electron multipliers, there may be confusion over their roles. This chapter illustrates the differences between the two arrays. [Pg.213]

There is potential confusion in the use of the word array in mass spectrometry. Historically, array has been used to describe an assemblage of small single-point ion detectors (elements), each of which acts as a separate ion current generator. Thus, arrival of ions in one of the array elements generates an ion current specifically from that element. An ion of any given m/z value is collected by one of the elements of the array. An ion of different m/z value is collected by another element. Ions of different m/z value are dispersed in space over the face of the array, and the ions are detected by m/z value at different elements (Figure 30.4). [Pg.213]

A second use of arrays arises in the detection of trace components of material introduced into a mass spectrometer. For such very small quantities, it may well be that, by the time a scan has been carried out by a mass spectrometer with a point ion collector, the tiny amount of substance may have disappeared before the scan has been completed. An array collector overcomes this problem. Often, the problem of detecting trace amounts of a substance using a point ion collector is overcome by measuring not the whole mass spectrum but only one characteristic m/z value (single ion monitoring or single ion detection). However, unlike array detection, this single-ion detection method does not provide the whole spectrum, and an identification based on only one m/z value may well be open to misinterpretation and error. [Pg.216]

A multipoint ion collector (also called the detector) consists of a large number of miniature electron multiplier elements assembled, or constructed, side by side over a plane. A multipoint collector can be an array, which detects a dispersed beam of ions simultaneously over a range of m/z values and is frequently used with a sector-type mass spectrometer. Alternatively, a microchannel plate collector detects all ions of one m/z value. When combined with a TOP analyzer, the microchannel plate affords an almost instantaneous mass spectrum. Because of their construction and operation, microchannel plate detectors are cheaper to fit and maintain. Multipoint detectors are particularly useful for situations in which ionization occurs within a very short space of time, as with some ionization sources, or in which only trace quantities of any substance are available. For such fleeting availability of ions, only multipoint collectors can measure a whole spectrum or part of a spectrum satisfactorily in the short time available. [Pg.217]

Depending on the dispersion achieved at the array plane, m/z values can be separated by fractions of a unit mass, by unit mass, or by only tens of mass units. [Pg.409]

The ions in a beam that has been dispersed in space according to their various m/z values can be collected simultaneously by a planar assembly of small electron multipliers. All ions within a specified mass range are detected at the same time, giving the array detector an advantage for analysis of very small quantities of any one substance or where ions are produced intermittently during short time intervals. [Pg.409]

In a mass spectrometer, ions can arrive at a multipoint collector as a spatially dispersed beam. This means that all ions of different m/z values arrive simultaneously but separated in space according to each m/z value. Each element of the array, depending on its position in space, detects one particular m/z value (see Chapter 29, Array Collectors ). [Pg.410]

Alternatively, the ions in a mass spectrometer can also arrive at a multipoint collector as a temporally dispersed beam. Therefore, at any point in time, all ions of the same m/z value arrive simultaneously, and different m/z values arrive at other times. Ail elements of this collector detect the arrival of ions of one m/z value at any one instant of time. This type of detector, which is also an array, is called a microchannel plate collector of ions. [Pg.410]

In a beam of ions separated in time according to m/z value, the total time taken for ions of different m/z values to arrive at a microchannel plate is so short (about 30 psec) that the spectrum appears to have been obtained instantaneously. Thus, for practical purposes, the array and microchannel plate collectors produce an instantaneous mass spectrum, even though the first detects a spatially dispersed set of m/z values and the second detects a temporally dispersed set. [Pg.410]


See other pages where Mass array is mentioned: [Pg.246]    [Pg.28]    [Pg.153]    [Pg.42]    [Pg.42]    [Pg.246]    [Pg.28]    [Pg.153]    [Pg.42]    [Pg.42]    [Pg.195]    [Pg.205]    [Pg.205]    [Pg.207]    [Pg.208]    [Pg.209]    [Pg.209]    [Pg.210]    [Pg.215]    [Pg.215]    [Pg.216]    [Pg.219]    [Pg.224]   


SEARCH



Array Elements (Ion Mass Range)

Array detection mass spectrometer

Mass array primer extension

Mass-sensitive sensor arrays

Micro-arrays for mass spectrometry

Primer mass array

Separation of Array Elements (Ion Mass Range)

© 2024 chempedia.info