Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Liquid crystalline phases surfactants

Use of liquid crystalline phases Surfactants produce liquid crystalline phases at high concentrations. Three main types of Hquid crystals can be identified hexagonal phase (sometimes referred to as middle phase) cubic phase and lamellar (neat phase). All of these structures are highly viscous and also show elastic responses. If produced in the continuous phase of suspensions, they can eliminate sedimentation of the particles. These Hquid crystalline phase are particularly useful for application in liquid detergents which contain high surfactant concentrations. Their presence reduces sedimentation of the coarse builder particles (phosphates and silicates). [Pg.158]

Surfactants having an inverted tnmcated cone shape yield inverted spheroidal micelles. Many double-chain surfactants such as AOT fonn such inverted micellar stmctures. These kinds of surfactant also fonn inverted anisotropic liquid crystalline phases. [Pg.2589]

Both high bulk and surface shear viscosity delay film thinning and stretching deformations that precede bubble bursting. The development of ordered stmctures in the surface region can also have a stabilizing effect. Liquid crystalline phases in foam films enhance stabiUty (18). In water-surfactant-fatty alcohol systems the alcohol components may serve as a foam stabilizer or a foam breaker depending on concentration (18). [Pg.465]

With increasing water content the reversed micelles change via swollen micelles 62) into a lamellar crystalline phase, because only a limited number of water molecules may be entrapped in a reversed micelle at a distinct surfactant concentration. Tama-mushi and Watanabe 62) have studied the formation of reversed micelles and the transition into liquid crystalline structures under thermodynamic and kinetic aspects for AOT/isooctane/water at 25 °C. According to the phase-diagram, liquid crystalline phases occur above 50—60% H20. The temperature dependence of these phase transitions have been studied by Kunieda and Shinoda 63). [Pg.8]

The cost/performance factor of individual surfactants will always be considered in determining which surfactants are blended in a mixed active formulation. However, with the recent advent of compact powders and concentrated liquids, other factors, such as processing, density, powder flowability, water content, stabilization of additives, dispersibility in nonaqueous solvents, dispersion of builders, and liquid crystalline phase behavior, have become important in determining the selection of individual surfactants. [Pg.127]

Like other surfactants, alkanesulfonates generate lyotropic liquid-crystalline phases. But the phase equilibria can only be inadequately described because of the enormous experimental difficulties in, for instance, establishing an appropriate equilibrium. Nevertheless, for simple ternary systems the modeling of surfactant-containing liquid-liquid equilibria has been successfully demonstrated [60],... [Pg.189]

The phase behavior of a-ester sulfonates has been studied in detail with methyl laurate and methyl palmitate [58]. In both cases, at higher temperatures, as the surfactant concentration increases, there is a transition from an isotropic solution to a hexagonal liquid crystalline phase and finally, at high surfactant concentrations, to a lamellar liquid crystal (Fig. 4). The crystal/liquid-crys-tal phase transition occurs at even higher temperatures as the chain length increases. On the other hand, chain length has practically no influence on the... [Pg.477]

FIGURE 13.5 AFM images of Prussian blue-modified monocrystalline graphite (a) conventional Prussian blue deposited without surfactants, (b) Prussian blue electrochemically deposited through liquid crystalline phase of non-ionic surfactant Brij-56. [Pg.447]

FIG. 11. Transmission electron micrographs of freeze fractured oily droplets dispersed (a) in a hexagonal and (b) in a cubic liquid crystalline phase, bar 100 nm. From Mueller-Goymann, C., Liquid crystals in emulsions, creams and gels, containing ethoxylated sterols as surfactant, Pharm. Res. 1 154-158 (1984). [Pg.137]

A change in the perception of their mechanism of action came in the sixties when Lawrence (7) pointed out that short chain surfactants would delay the gelling to a liquid crystalline phase which takes place at high surfactant concentrations. Friberg and Rydhag (8) showed that hydrotropes, in addition, prevent the formation of lamellar liquid crystals in combinations of surfactants with hydrophobic amphlphiles, such as long chain carboxylic acids and alcohols. The importance of this finding for laundry action was evident. [Pg.107]

The interest in the conformation of the hydrotrope is primarily related to its behavior at an oll/water Interface in conjunction with surfactant molecules. In addition, molecules from an "oily dirt" may be present. Finally, it is essential to realize that the action of the hydrotrope is to destabilize a liquid crystalline phase and transform it to an isotropic liquid. [Pg.113]

In recent studies, Friberg and co-workers (J, 2) showed that the 21 carbon dicarboxylic acid 5(6)-carboxyl-4-hexyl-2-cyclohexene-1-yl octanoic acid (C21-DA, see Figure 1) exhibited hydrotropic or solubilizing properties in the multicomponent system(s) sodium octanoate (decanoate)/n-octanol/C2i-DA aqueous disodium salt solutions. Hydrotropic action was observed in dilute solutions even at concentrations below the critical micelle concentration (CMC) of the alkanoate. Such action was also observed in concentrates containing pure nonionic and anionic surfactants and C21-DA salt. The function of the hydrotrope was to retard formation of a more ordered structure or mesophase (liquid crystalline phase). [Pg.117]

Another feature of surfactant-water systems is that they can also aggregate into lyotropic liquid crystalline phases when Intermicellar interactions are significant. Typically, non-Newtonian behavior is usually found for these liquid crystalline phases. For the 3LDA0/ISDS mixed system, all evidence suggests that they do form liquid crystalline phase. [Pg.139]

Recently, we and others demonstrated that appropriate germanide Zintl clusters in non-aqueous liquid-crystalline phases of cationic surfactants can assemble well-ordered mesostructured and mesoporous germanium-based semiconductors. These include mesostructured cubic gyroidal and hexagonal mesoporous Ge as well as ordered mesoporous binary intermetallic alloys and Ge-rich chalcogenide semiconductors. [Pg.135]

Surfactants are used in a variety of applications, frequently in the form of dilute aqueous solutions. However, it is not cost effective to transport, store, and display in retail outlets surfactant products such as household detergents in this form. Accordingly, it is important to have products that dissolve quickly and to understand what aspects of surfactant composition and structure promote rapid dissolution. The dissolution process is more complex for surfactants than for most other materials because it typically involves formation of one or more concentrated and highly viscous liquid crystalline phases, which are not present initially and which could potentially hinder dissolution. In this article the rates and mechanisms of surfactant dissolution are reviewed and discussed. [Pg.4]

Prinsen et al. [23] and Warren et al. [31] used dissipative particle dynamics to simulate dissolution of a pure surfactant in a solvent. Tuning surfactant-surfactant, surfactant-solvent, and solvent-solvent interactions to yield an equilibrium phase diagram similar to Fig. 1 at low temperatures except for the absence of the V i phase, they found that the kinetics of formation of the liquid crystalline phases at the interfaces was rapid and that the rate of dissolution was controlled by diffusion, in agreement with the above experimental results. [Pg.7]

Bai [2] performed similar drop dissolution experiments with sodium oleate (NaOl) and Ci2(EO)4. For drops initially containing 7 and lOwt. % NaOl (particle size < 38 jim) the behavior was similar to that described above for drops having 8 wt. % SDS. However for drops with 15 and 17 wt. % NaOl dissolution was faster—comparable to that of the pure nonionics—and neither a surfactant-rich liquid immiscible with water nor emulsification was seen. Instead a concentrated liquid crystalline phase transformed directly into a micellar solution, as seen for the pure nonionics and nonionic mixtures well below their cloud points. [Pg.14]

As indicated above, miscibiUty gaps are small and intermediate lamellar liquid crystalline phases dissolve rapidly into the aqueous phase if the surfactant or surfactant mixture is rather hydrophihc with a high spontaneous curvature (low (v/la)), for instance at temperatures below Tq for pure nonionic surfactants. In this case dissolution, which converts lamellae of zero curvature to aggregates with significant curvature as surfactant concentration decreases, occurs spontaneously because it reduces system free energy. [Pg.16]

There may be limitations in applying the above model to other systems. For instance, the initial surfactant often exists as a lamellar phase as for phospholipids, so that there are no interfaces between various liquid crystalline phases whose velocities can be measured and used to determine effective dif-fusivities as in the AOT analysis above. As a result, the base of the myelinic figures must approach the base of the vertical cell as the volume of the lamellar phase shrinks, and the assumption made above that the composition of the myelins is independent of time may not be valid. [Pg.22]

Fig. 1 a-f. Various forms of surfactant aggregations in solution a Monolayer b bilayer c liquid crystalline phase (lamellar) d vesicle (liposome) e micelle f reverse micelle. (Reproduced from [39] with permission of PL Luisi)... [Pg.127]

During the studies of phase behaviour two types of liquid crystalline phases were identified. LC material was viscous and exhibited intense "white" birefingence. material was apparently homogeneous but of low viscosity and exhibited "multi-coloured" birefringence. The liquid crystalline phases observed in the equilibrium studies of surfactant concentrations up to 25 are unlikely to take part in the self-emulsification process due to the presence of two-phase regions between L2 and liquid crystalline phases however, LC material may account for the improved stability of emulsions formed by 25 surfactant systems (Table II). Figure 4c indicates that by increasing the surfactant concentration to 30 the... [Pg.250]

Micellar and pre-micellar solutions of methanol in triolein were studied with three different surfactant systems using 2-octanol as a co-surfactant. Surfactants evaluated by viscosity, conductivity, density, refractive index and particle size data along with polarizing microscopic examinations were bis(2-ethylhexyl) sodium sulfosuccinate, triethylammonium linoleate and tetradecyldimethylammonium linoleate. Data show phase equilibria regions of liquid crystalline phases as well as micellar solutions. All systems were effective for solubilizing methanol in triolein. The order of effectiveness for water tolerance is Tetradecyldimethylammonium linoleate>... [Pg.283]

Figure 5.2 Top-diagramatic representation of a detergent molecule, (a) Single tailed (b) double tailed (c) zwitterionic (d) bolamphiphilic. Bottom - different types of surfactant aggregates in solution (A) monolayer (B) bilayer (C) liquid-crystallin phase lamellar (D) normal micelles (E) cylindrical micelles (hexagonal) (F) vesicles (liposomes) (G) reversed micelles. Figure 5.2 Top-diagramatic representation of a detergent molecule, (a) Single tailed (b) double tailed (c) zwitterionic (d) bolamphiphilic. Bottom - different types of surfactant aggregates in solution (A) monolayer (B) bilayer (C) liquid-crystallin phase lamellar (D) normal micelles (E) cylindrical micelles (hexagonal) (F) vesicles (liposomes) (G) reversed micelles.

See other pages where Liquid crystalline phases surfactants is mentioned: [Pg.62]    [Pg.62]    [Pg.483]    [Pg.517]    [Pg.478]    [Pg.165]    [Pg.336]    [Pg.166]    [Pg.284]    [Pg.140]    [Pg.29]    [Pg.30]    [Pg.117]    [Pg.136]    [Pg.340]    [Pg.237]    [Pg.238]    [Pg.13]    [Pg.16]    [Pg.83]    [Pg.8]    [Pg.4]    [Pg.5]    [Pg.12]    [Pg.23]    [Pg.126]    [Pg.76]   
See also in sourсe #XX -- [ Pg.138 ]




SEARCH



Crystalline phases

Liquid crystalline phase

Liquid crystalline phases in binary surfactant systems

Liquid crystalline phases in ternary surfactant systems

Nanoparticles surfactant/liquid crystalline phase

Phase surfactant

© 2024 chempedia.info