Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surfactants dissolution

Surfactants are used in a variety of applications, frequently in the form of dilute aqueous solutions. However, it is not cost effective to transport, store, and display in retail outlets surfactant products such as household detergents in this form. Accordingly, it is important to have products that dissolve quickly and to understand what aspects of surfactant composition and structure promote rapid dissolution. The dissolution process is more complex for surfactants than for most other materials because it typically involves formation of one or more concentrated and highly viscous liquid crystalline phases, which are not present initially and which could potentially hinder dissolution. In this article the rates and mechanisms of surfactant dissolution are reviewed and discussed. [Pg.4]

In the remainder of this article, discussion of surfactant dissolution mechanisms and rates proceeds from the simplest case of pure nonionic surfactants to nonionic surfactant mixtures, mixtures of nonionics with anionics, and finally to development of myehnic figures during dissolution, with emphasis on studies in one anionic surfactant/water system. Not considered here are studies of rates of transformation between individual phases or aggregate structures in surfactant systems, e.g., between micelles and vesicles. Reviews of these phenomena, which include some of the information summarized below, have been given elsewhere [7,15,29]. [Pg.5]

Since their effective diffusivities are of the same magnitude as those of micellar solutions, the hquid crystalUne phases, though viscous, do not significantly hinder surfactant dissolution for these rather hydrophihc surfactants. Indeed, a drop of Ci2(EO)6 having Ro = 78 pm dissolved completely in only 16 s at 30 °C. Rapid dissolution is favored because free energy decreases as the surfactant is transferred from the Hquid surfactant phase L2 to liquid crystals) to aqueous micellar solution and the aggregate shape approaches that of a dilute Li phase, where its free energy is minimized at this temperature. [Pg.8]

Blondino FE, Byron PR. Surfactant dissolution and water solubilization in chlorine-free liquefied gas propellants. Drug Dev Ind Pharm 1998 24(10) 935-945. [Pg.246]

Interface instabilities, known as myelins, are an example of exotic nonequilibrium behavior present during dissolution in a number of surfactant systems. Although much is known about equilibrium phase behavior much still remains to be understood about nonequilibrium processes present in surfactant dissolution. In this chapter nucleation and growth, self and collective diffusion processes and nonlinear dynamics and instabilities observed in various polymeric systems are reviewed. These processes play an important role in our understanding of myelin instabilities. Kinetic maps and the concept of the free energy landscape provide a useful approach to rationalize some of the more complex behavior sometimes observed. [Pg.226]

In this chapter I will review problems related to dissolution kinetics and nonlinear process that occur in surfactant systems. First we discuss the role of phase kinetics in surfactant dissolution. Then the diffusive processes are discussed where it is important to appreciate the difference between self and collective diffusion. Finally, interface instabilities will be discussed which includes some of the most recent and significant observations. These studies are extremely interesting in the context of industrial problems such as detergency. [Pg.227]

During surfactant dissolution the two diffusion processes can be identified. On the molecular scale a molecule undergoes self diffusion where the diffusion coefficient is determined from its mean squared displacement. Various NMR techniques have been used to study quantitatively self diffusion processes (21-24), It is important to note that each component in the system will have a self diffusion coefficient. Diffusion coefficients for a number of mesophase systems have been collected where values of order 10 - 10 m s" were reported (25). The self diffusion coefficients of the solvent are typically reduced no more than an order of magnitude in the presence of mesophases which essentially act as obstacles to the solvent (25, 26). [Pg.228]

In most penetration scans performed in surfactant dissolution experiments the phases are homogeneous and the interface between them is sharp. However, in some cases the interface becomes unstable and dramatic instobilities can be observed. There are many examples of instabilities that are well understood that maybe rationalized in terms of kinetic maps or dissolution paths, or dynamic instabilities involving fluid flow (e.g. Marangoni effects) or other Laplacian growth instabilities , such as Mullins-Sekerka instabilities (3J). However, myelins (Figure 1) are an example of an instability that remains poorly understood. [Pg.229]

Naoi and co-workers [55], with a QCM, studied lithium deposition and dissolution processes in the presence of polymer surfactants in an attempt to obtain the uniform current distribution at the electrode surface and hence smooth surface morphology of the deposited lithium. The polymer surfactants they used were polyethyleneglycol dimethyl ether (molecular weight 446), or a copolymer of dimethylsilicone (ca. 25 wt%) and propylene oxide (ca. 75 wt%) (molecular weight 3000) in LiC104-EC/DMC (3 2, v/v). [Pg.348]

Nanoparticles of the semicondnctor titanium dioxide have also been spread as mono-layers [164]. Nanoparticles of TiOi were formed by the arrested hydrolysis of titanium iso-propoxide. A very small amount of water was mixed with a chloroform/isopropanol solution of titanium isopropoxide with the surfactant hexadecyltrimethylammonium bromide (CTAB) and a catalyst. The particles produced were 1.8-2.2 nm in diameter. The stabilized particles were spread as monolayers. Successive cycles of II-A isotherms exhibited smaller areas for the initial pressnre rise, attributed to dissolution of excess surfactant into the subphase. And BAM observation showed the solid state of the films at 50 mN m was featureless and bright collapse then appeared as a series of stripes across the image. The area per particle determined from the isotherms decreased when sols were subjected to a heat treatment prior to spreading. This effect was believed to arise from a modification to the particle surface that made surfactant adsorption less favorable. [Pg.89]

The structure of these globular aggregates is characterized by a micellar core formed by the hydrophilic heads of the surfactant molecules and a surrounding hydrophobic layer constituted by their opportunely arranged alkyl chains whereas their dynamics are characterized by conformational motions of heads and alkyl chains, frequent exchange of surfactant monomers between bulk solvent and micelle, and structural collapse of the aggregate leading to its dissolution, and vice versa [2-7]. [Pg.474]

Major applications of modern TLC comprise various sample types biomedical, pharmaceutical, forensic, clinical, biological, environmental and industrial (product uniformity, impurity determination, surfactants, synthetic dyes) the technique is also frequently used in food science (some 10% of published papers) [446], Although polymer/additive analysis takes up a small share, it is apparent from deformulation schemes presented in Chapter 2 that (HP)TLC plays an appreciable role in industrial problem solving even though this is not reflected in a flood of scientific papers. TLC is not only useful for polymer additive extracts but in particular for direct separations based on dissolutions. [Pg.227]

From the characteristics of the methods, it would appear that FD-MS can profitably be applied to poly-mer/additive dissolutions (without precipitation of the polymer or separation of the additive components). The FD approach was considered to be too difficult and fraught with inherent complications to be of routine use in the characterisation of anionic surfactants. The technique does, however, have a niche application in the area of nonpolar compound classes such as hydrocarbons and lubricants, compounds which are difficult to study using other mass-spectrometry ionisation techniques. [Pg.376]

Ong et al. [134] found that several hydrophilic anionic, non ionic, or cationic surfactants can alleviate the deleterious effect of magnesium stearate over-mixing on dissolution from capsules when added with the lubricant in a ratio as low as 1 5 (w/w). These successful surfactants were sodium A-lauroyl sarcosinate, sodium stearoyl-2-lactylate, sodium stearate, polox-amer 188, cetylpyridinium chloride, and sodium lauryl sulfate. The lipophilic surfactant glyceryl monostearate did not alleviate the magnesium stearate mixing effect. A reduction in thier particle size was shown to enhance effectiveness, particularly in the case of surfactants with low solubility and slow dissolution rate. [Pg.368]

The effectiveness of surfactants in overcoming the hydrophobic effect of magnesium stearate may not be a result solely of an increase in the wetting properties of the bulk phase. Compared to putting the surfactant in the dosage form, Botzolakis [71] and Wang and Chowhan [135] found that adding an equivalent amount of surfactant to the dissolution medium was not effective. The possible impact of the surfactant at... [Pg.369]


See other pages where Surfactants dissolution is mentioned: [Pg.264]    [Pg.10]    [Pg.12]    [Pg.268]    [Pg.1]    [Pg.689]    [Pg.62]    [Pg.587]    [Pg.75]    [Pg.264]    [Pg.10]    [Pg.12]    [Pg.268]    [Pg.1]    [Pg.689]    [Pg.62]    [Pg.587]    [Pg.75]    [Pg.149]    [Pg.2595]    [Pg.316]    [Pg.317]    [Pg.526]    [Pg.516]    [Pg.193]    [Pg.463]    [Pg.1875]    [Pg.1880]    [Pg.484]    [Pg.413]    [Pg.94]    [Pg.213]    [Pg.197]    [Pg.55]    [Pg.63]    [Pg.119]    [Pg.263]    [Pg.307]    [Pg.310]    [Pg.362]    [Pg.368]   
See also in sourсe #XX -- [ Pg.3 ]




SEARCH



Dissolution State of Nonionic Surfactants

Dissolution of surfactants

Dissolution rate surfactant effects

Dissolution, from drug surfactant mixtures

Effect of Surfactants and pH on Dissolution Rate

Surfactants dissolution rate increase

Surfactants dissolution test media

© 2024 chempedia.info