Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solvation/solvents interactions

The solute-solvent interaction in equation A2.4.19 is a measure of the solvation energy of the solute species at infinite dilution. The basic model for ionic hydration is shown in figure A2.4.3 [5] there is an iimer hydration sheath of water molecules whose orientation is essentially detemiined entirely by the field due to the central ion. The number of water molecules in this iimer sheath depends on the size and chemistry of the central ion ... [Pg.566]

Specific solute-solvent interactions involving the first solvation shell only can be treated in detail by discrete solvent models. The various approaches like point charge models, siipennoleciilar calculations, quantum theories of reactions in solution, and their implementations in Monte Carlo methods and molecular dynamics simulations like the Car-Parrinello method are discussed elsewhere in this encyclopedia. Here only some points will be briefly mentioned that seem of relevance for later sections. [Pg.839]

Solvent effects on chemical equilibria and reactions have been an important issue in physical organic chemistry. Several empirical relationships have been proposed to characterize systematically the various types of properties in protic and aprotic solvents. One of the simplest models is the continuum reaction field characterized by the dielectric constant, e, of the solvent, which is still widely used. Taft and coworkers [30] presented more sophisticated solvent parameters that can take solute-solvent hydrogen bonding and polarity into account. Although this parameter has been successfully applied to rationalize experimentally observed solvent effects, it seems still far from satisfactory to interpret solvent effects on the basis of microscopic infomation of the solute-solvent interaction and solvation free energy. [Pg.432]

Because the key operation in studying solvent effects on rates is to vary the solvent, evidently the nature of the solvation shell will vary as the solvent is changed. A distinction is often made between general and specific solvent effects, general effects being associated (by hypothesis) with some appropriate physical property such as dielectric constant, and specific effects with particular solute-solvent interactions in the solvation shell. In this context the idea of preferential solvation (or selective solvation) is often invoked. If a reaction is studied in a mixed solvent. [Pg.403]

Because biomolecules normally exist in liquid water, this article will be largely concerned with their ordered structures in aqueous media and therefore with hydration effects. In order to understand better the influence of solute-solvent interactions on molecular order, also solvation in organic liquids will be considered to some extent. [Pg.2]

With a realistic solvent model, we can explore the properties of solvated molecules. As before, we take a classical approach by adding the solute-solvent interaction term (USs) to the potential surface of the system and write... [Pg.80]

The term Uss is the solvent-solvent interaction term [the Unb and Uqq terms of eq. (3.1)] and t/ind is the induced dipoles three-body term which includes now the field both from the solute and the solvent. With a potential surface for a solvated solute we can address the important issue of evaluating solvation energies. In principle, one can try to evaluate the average poten-... [Pg.80]

Now knowing how to evaluate solvation-free energies, we are ready to explore the effect of the solvent on the potential surface of the reacting solute atoms. Adapting the EVB approach we can describe the reaction by including the solute-solvent interaction in the diagonal elements of the solute Hamiltonian, using... [Pg.83]

In good solvents, a polymer becomes well solvated by solvent molecules and the conformation of its molecules expands. By contrast, in poor solvents a polymer is not well solvated, and hence adopts a relatively contracted conformation. Eventually of course, if the polymer is sufficiently poor the conformation becomes completely contracted, there are no polymer-solvent interactions, and the polymer precipitates out of solution. In other words, the ultimate poor solvent is a non-solvent. [Pg.72]

Ionic solvation is interaction between ions and solvent molecules that leads to the formation of relatively strong aggregates, the solvated ions. In aqueous solutions the terms ionic hydration and hydrated ions are used as weU. [Pg.106]

H-bonding is an important, but not the sole, interatomic interaction. Thus, total energy is usually calculated as the sum of steric, electrostatic, H-bonding and other components of interatomic interactions. A similar situation holds with QSAR studies of any property (activity) where H-bond parameters are used in combination with other descriptors. For example, five molecular descriptors are applied in the solvation equation of Kamlet-Taft-Abraham excess of molecular refraction (Rj), which models dispersion force interactions arising from the polarizability of n- and n-electrons the solute polarity/polarizability (ir ) due to solute-solvent interactions between bond dipoles and induced dipoles overall or summation H-bond acidity (2a ) overall or summation H-bond basicity (2(3 ) and McGowan volume (VJ [53] ... [Pg.142]

An empirical solution of Eq. (1) consists of analysis of the solvation process of the target molecule in solute, finding descriptors, which govern each phase and using them to calculate logP. This was done, for example, in the LSER approach which considered that the process of any solvation involves (i) endoergic creation of a cavity in the solvent and (ii) incorporation of the solute in the cavity with consequent setting up of various solute-solvent interactions [4—6]. Each of these steps... [Pg.382]

MD simulations in expHcit solvents are stiU beyond the scope of the current computational power for screening of a large number of molecules. However, mining powerful quantum chemical parameters to predict log P via this approach remains a challenging task. QikProp [42] is based on a study [3] which used Monte Carlo simulations to calculate 11 parameters, including solute-solvent energies, solute dipole moment, number of solute-solvent interactions at different cutoff values, number of H-bond donors and acceptors (HBDN and HBAQ and some of their variations. These parameters made it possible to estimate a number of free energies of solvation of chemicals in hexadecane, octanol, water as well as octanol-water distribution coefficients. The equation calculated for the octanol-water coefficient is ... [Pg.389]

Since around 1950, in studies of solvent effects for organic reactions, empirical solvent parameters have been used these parameters represent the capabilities of solvents for the solute-solvent interactions (especially Lewis acid-base interactions). Though the solute-solvent interactions should depend on the solute as well as on the solvent, the empirical solvent parameters are considered to be irrelevant to solutes in other words, the use of only these parameters enables us to evaluate the solvation energies. Strictly... [Pg.42]

Since the most direct evidence for specihc solvation of a carbene would be a spectroscopic signature distinct from that of the free carbene and also from that of a fully formed ylide, TRIR spectroscopy has been used to search for such car-bene-solvent interactions. Chlorophenylcarbene (32) and fluorophenylcarbene (33) were recently examined by TRIR spectroscopy in the absence and presence of tetrahydrofuran (THF) or benzene. These carbenes possess IR bands near 1225 cm that largely involve stretching of the partial double bond between the carbene carbon and the aromatic ring. It was anticipated that electron pair donation from a coordinating solvent such as THF or benzene into the empty carbene p-orbital might reduce the partial double bond character to the carbene center, shifting this vibrational frequency to a lower value. However, such shifts were not observed, perhaps because these halophenylcarbenes are so well stabilized that interactions with solvent are too weak to be observed. The bimolecular rate constant for the reaction of carbenes 32 and 33 with tetramethylethylene (TME) was also unaffected by THF or benzene, consistent with the lack of solvent coordination in these cases. °... [Pg.199]

Further, in the case of virtually non-existent ion-solvent interactions (low degree of solvation), so that solute-solute interactions become more important, Kraus and co-workers47 confirmed that in dilute solutions ion pairs and some simple ions occurred, in more concentrated solutions triple ions of type M+ X M+ orX M+X andinhighly concentrated solutions even quadrupoles the expression triple ions was reserved by Fuoss and Kraus48 for non-hydrogen-bonded ion aggregates formed by electrostatic attraction. [Pg.272]

An alternative approach to calculating the free energy of solvation is to carry out simulations corresponding to the two vertical arrows in the thermodynamic cycle in Fig. 2.6. The transformation to nothing should not be taken literally -this means that the perturbed Hamiltonian contains not only terms responsible for solute-solvent interactions - viz. for the right vertical arrow - but also all the terms that involve intramolecular interactions in the solute. If they vanish, the solvent is reduced to a collection of noninteracting atoms. In this sense, it disappears or is annihilated from both the solution and the gas phase. For this reason, the corresponding computational scheme is called double annihilation. Calculations of... [Pg.54]

As has been suggested in the previous section, explanations of solvent effects on the basis of the macroscopic physical properties of the solvent are not very successful. The alternative approach is to make use of the microscopic or chemical properties of the solvent and to consider the detailed interaction of solvent molecules with their own kind and with solute molecules. If a configuration in which one or more solvent molecules interacts with a solute molecule has a particularly low free energy, it is feasible to describe at least that part of the solute-solvent interaction as the formation of a molecular complex and to speak of an equilibrium between solvated and non-solvated molecules. Such a stabilization of a particular solute by solvation will shift any equilibrium involving that solute. For example, in the case of formation of carbonium ions from triphenylcarbinol, the equilibrium is shifted in favor of the carbonium ion by an acidic solvent that reacts with hydroxide ion and with water. The carbonium ion concentration in sulfuric acid is greater than it is in methanol-... [Pg.93]


See other pages where Solvation/solvents interactions is mentioned: [Pg.4]    [Pg.4]    [Pg.834]    [Pg.835]    [Pg.171]    [Pg.549]    [Pg.139]    [Pg.429]    [Pg.783]    [Pg.402]    [Pg.403]    [Pg.420]    [Pg.47]    [Pg.232]    [Pg.849]    [Pg.383]    [Pg.384]    [Pg.382]    [Pg.98]    [Pg.42]    [Pg.44]    [Pg.53]    [Pg.151]    [Pg.405]    [Pg.740]    [Pg.270]    [Pg.218]    [Pg.221]    [Pg.35]    [Pg.191]    [Pg.737]    [Pg.180]    [Pg.82]   


SEARCH



Solvated interactions

Solvation interactions

Solvation/solvents

Solvent solvating

Solvents, interactive

The solvation effect solute-solvent interaction

© 2024 chempedia.info