Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lipid free fatty acids

Kobayashi, M., Mutharasan, R.K., Feng, J., Roberts, M.F., and Lomasney, J.W., Identification of hydrophobic interactions between proteins and lipids free fatty acids activate phospholipase C deltal via allosterism, Biochemistry, 43, 7522, 2004. [Pg.332]

J. G. Hamilton and K. Comai, Separation of neutral lipid, free fatty acid and phosphohpid classes by normal phase HPLC, Lipids 23 1150-1158 (1988). [Pg.926]

Hamilton, J.C. and K. Comai. Rapid Separation of Neutral Lipids, Free Fatty Acids and... [Pg.54]

Phospho- lipids Free Fatty Acids Triglycer- ides... [Pg.325]

Solvents from different manufacturers may contain different amounts of residues, which may vary from neutral lipids (free fatty acids and TAG), acidic contaminants, cosmetics, detergents, to plasticizers. These residues could significantly affect the results of analysis. Therefore, it is advised that the solvents used for lipidomics should be carefully selected, and we should make efforts to purchase the highest quality of solvents possible. To this end, the solvents in the author s laboratory are obtained from Honeywell Burdick and Jackson (Muskegon, MI). [Pg.350]

Lipids present in the diet may become rancid. When fed at high (>4-6%) levels, Hpids may decrease diet acceptabiUty, increase handling problems, result in poor pellet quaUty, cause diarrhea, reduce feed intake, and decrease fiber digestion in the mmen (5). To alleviate the fiber digestion problem, calcium soaps or prilled free fatty acids have been developed to escape mminal fermentation. These fatty acids then are available for absorption from the small intestine (5). Feeding whole oilseeds also has alleviated some of the problems caused by feeding Hpids. A detailed discussion of Hpid metaboHsm by mminants can be found (16). [Pg.156]

Insulin resistance occurs when the normal response to a given amount of insulin is reduced. Resistance of liver to the effects of insulin results in inadequate suppression of hepatic glucose production insulin resistance of skeletal muscle reduces the amount of glucose taken out of the circulation into skeletal muscle for storage and insulin resistance of adipose tissue results in impaired suppression of lipolysis and increased levels of free fatty acids. Therefore, insulin resistance is associated with a cluster of metabolic abnormalities including elevated blood glucose levels, abnormal blood lipid profile (dyslipidemia), hypertension, and increased expression of inflammatory markers (inflammation). Insulin resistance and this cluster of metabolic abnormalities is strongly associated with obesity, predominantly abdominal (visceral) obesity, and physical inactivity and increased risk for type 2 diabetes, cardiovascular and renal disease, as well as some forms of cancer. In addition to obesity, other situations in which insulin resistance occurs includes... [Pg.636]

Figure 15-6. Transport and fate of major lipid substrates and metabolites. (FFA, free fatty acids LPL, lipoprotein lipase MG, monoacylglycerol TG, triacylglycerol VLDL, very low density lipoprotein.)... Figure 15-6. Transport and fate of major lipid substrates and metabolites. (FFA, free fatty acids LPL, lipoprotein lipase MG, monoacylglycerol TG, triacylglycerol VLDL, very low density lipoprotein.)...
Inherited aldolase A deficiency and pyruvate kinase deficiency in erythrocytes cause hemolytic anemia. The exercise capacity of patients with muscle phos-phofiaictokinase deficiency is low, particularly on high-carbohydrate diets. By providing an alternative lipid fuel, eg, during starvation, when blood free fatty acids and ketone bodies are increased, work capacity is improved. [Pg.143]

Plasma lipids consist of triacylglycerols (16%), phospholipids (30%), cholesterol (14%), and cholesteryl esters (36%) and a much smaller fraction of unesteri-fied long-chain fatty acids (free fatty acids) (4%). This latter fraction, the free fatty acids (FFA), is metaboh-cally the most active of the plasma hpids. [Pg.205]

Free fatty acids are removed from the blood extremely rapidly and oxidized (fulfilling 25-50% of energy requirements in starvation) or esterified to form triacylglycerol in the tissues. In starvation, esterified lipids from the circulation or in the tissues are oxidized as well, particularly in heart and skeletal muscle cells, where considerable stores of lipid are to be found. [Pg.207]

Figure 45-6. Interaction and synergism between antioxidant systems operating in the lipid phase (membranes) of the cell and the aqueous phase (cytosol). (R-,free radical PUFA-00-, peroxyl free radical of polyunsaturated fatty acid in membrane phospholipid PUFA-OOH, hydroperoxy polyunsaturated fatty acid in membrane phospholipid released as hydroperoxy free fatty acid into cytosol by the action of phospholipase Aj PUFA-OH, hydroxy polyunsaturated fatty acid TocOH, vitamin E (a-tocopherol) TocO, free radical of a-tocopherol Se, selenium GSH, reduced glutathione GS-SG, oxidized glutathione, which is returned to the reduced state after reaction with NADPH catalyzed by glutathione reductase PUFA-H, polyunsaturated fatty acid.)... Figure 45-6. Interaction and synergism between antioxidant systems operating in the lipid phase (membranes) of the cell and the aqueous phase (cytosol). (R-,free radical PUFA-00-, peroxyl free radical of polyunsaturated fatty acid in membrane phospholipid PUFA-OOH, hydroperoxy polyunsaturated fatty acid in membrane phospholipid released as hydroperoxy free fatty acid into cytosol by the action of phospholipase Aj PUFA-OH, hydroxy polyunsaturated fatty acid TocOH, vitamin E (a-tocopherol) TocO, free radical of a-tocopherol Se, selenium GSH, reduced glutathione GS-SG, oxidized glutathione, which is returned to the reduced state after reaction with NADPH catalyzed by glutathione reductase PUFA-H, polyunsaturated fatty acid.)...
Figure 38, Patterns obtained from the extract of 10 fd of serum for lipid fraction by thin-layer chromatography. In sequence, starting from the bottom, phospholipids, pee cholesterol, cholesterol aniline as an internal standard, triglycerides, and cholesterol esters. The free fatty acids occur between cholesterol and the internal standard and are only barely visible in the print, on the extreme right. They are readily visible, normally, to the eye. Figure 38, Patterns obtained from the extract of 10 fd of serum for lipid fraction by thin-layer chromatography. In sequence, starting from the bottom, phospholipids, pee cholesterol, cholesterol aniline as an internal standard, triglycerides, and cholesterol esters. The free fatty acids occur between cholesterol and the internal standard and are only barely visible in the print, on the extreme right. They are readily visible, normally, to the eye.
Figure 39, A lipid pattern from normal serum which has been scanned for density of the thin-layer chromatograph, showing the various peaks, P, phospholipids C, cholesterol F, free fatty acids S, internal standard, T, triglycerides CE, cholesterol esters. Figure 39, A lipid pattern from normal serum which has been scanned for density of the thin-layer chromatograph, showing the various peaks, P, phospholipids C, cholesterol F, free fatty acids S, internal standard, T, triglycerides CE, cholesterol esters.
FIGURE 12.4 (A) Diagrammatic representation of the separation of major simple lipid classes on silica gel TLC — solvent system hexane diethylether formic acid (80 20 2) (CE = cholesteryl esters, WE = wax esters, HC = hydrocarbon, EEA = free fatty acids, TG = triacylglycerol, CHO = cholesterol, DG = diacylglycerol, PL = phospholipids and other complex lipids). (B) Diagrammatic representation of the separation of major phospholipids on silica gel TLC — solvent sytem chloroform methanol water (70 30 3) (PA = phosphatidic acid, PE = phosphatidylethanolamine, PS = phosphatidylserine, PC = phosphatidylcholine, SPM = sphingomyelin, LPC = Lysophosphatidylcholine). [Pg.311]

Although not very commonly used in the separation of nentral hpids, two-dimensional systems have been nsed to separate hydrocarbons, steryl esters, methyl esters, and mixed glycerides that move close to each other in one-dimensional systems. Complex neutral lipids of Biomphalaria glabrata have been first developed in hexane diethyl ether (80 20), dried, and the plates have been turned 90°, followed by the second development in hexane diethyl ether methanol (70 20 10) for complete separation of sterol and wax esters, triglycerides, free fatty acids, sterols, and monoglycerides [54]. [Pg.313]

Chloroform-methanol extracts of Borrelia burgdorferi were used for the identification of lipids and other related components that could help in the diagnosis of Lyme disease [58]. The provitamin D fraction of skin lipids of rats was purified by PTLC and further analyzed by UV, HPLC, GLC, and GC-MS. MS results indicated that this fraction contained a small amount of cholesterol, lathosterol, and two other unknown sterols in addition to 7-dehydrocholesterol [12]. Two fluorescent lipids extracted from bovine brain white matter were isolated by two-step PTLC using silica gel G plates [59]. PTLC has been used for the separation of sterols, free fatty acids, triacylglycerols, and sterol esters in lipids extracted from the pathogenic fungus Fusarium culmorum [60]. [Pg.318]

Using PTLC six major fractions of lipids (phospholipids, free sterols, free fatty acids, triacylglycerols, methyl esters, and sterol esters) were separated from the skin lipids of chicken to smdy the penetration responses of Schistosoma cercaria and Austrobilharzia variglandis [79a]. To determine the structure of nontoxic lipids in lipopolysaccharides of Salmonella typhimurium, monophosphoryl lipids were separated from these lipids using PTLC. The separated fractions were used in FAB-MS to determine [3-hydroxymyristic acid, lauric acid, and 3-hydroxymyristic acids [79b]. [Pg.320]

Lipids are hydrolyzed by moisture and heat into free fatty acids, though hydrolytic enzymes may be deactivated by extrusion. Also, unsaturated fatty acids may imdergo oxidative rancidity (Camire et al., 1990). [Pg.187]

Intravenous lipid emulsion particles are hydrolyzed in the bloodstream by the enzyme lipoprotein lipase to release free fatty acids and glycerol. Free fatty acids then are be taken up into adipose tissue for storage (triglycerides), oxidized to energy in various tissues (e.g., skeletal muscle), or recycled in the liver to make lipoproteins. [Pg.1495]

Experiments with monkeys given intramuscular injections of a mineral oil emulsion with [l-14C] -hexa-decane tracer provide data illustrating that absorbed C-16 hydrocarbon (a major component of liquid petrolatum) is slowly metabolized to various classes of lipids (Bollinger 1970). Two days after injection, substantial portions of the radioactivity recovered in liver (30%), fat (42%), kidney (74%), spleen (81%), and ovary (90%) were unmetabolized -hexadecane. The remainder of the radioactivity was found as phospholipids, free fatty acids, triglycerides, and sterol esters. Essentially no radioactivity was found in the water-soluble or residue fractions. One or three months after injection, radioactivity still was detected only in the fat-soluble fractions of the various organs, but 80-98% of the detected radioactivity was found in non-hydrocarbon lipids. [Pg.171]

Kramer, S. D. Jakits-Deiser, C. Wunderli-Allenspach, H., Free-fatty acids cause pH-dependent changes in the drug-lipid membrane interations around the physiological pH,... [Pg.271]


See other pages where Lipid free fatty acids is mentioned: [Pg.257]    [Pg.35]    [Pg.91]    [Pg.29]    [Pg.1437]    [Pg.279]    [Pg.32]    [Pg.188]    [Pg.80]    [Pg.257]    [Pg.35]    [Pg.91]    [Pg.29]    [Pg.1437]    [Pg.279]    [Pg.32]    [Pg.188]    [Pg.80]    [Pg.120]    [Pg.966]    [Pg.279]    [Pg.205]    [Pg.232]    [Pg.196]    [Pg.199]    [Pg.310]    [Pg.319]    [Pg.74]    [Pg.280]    [Pg.74]    [Pg.179]    [Pg.422]    [Pg.302]    [Pg.302]   
See also in sourсe #XX -- [ Pg.66 , Pg.67 ]




SEARCH



Free fatty acids

Free lipid

Lipids acidic

Lipids fatty acids

© 2024 chempedia.info