Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lipid artificial

Pharamaceuticals Biochemicals Food products Industrial chemicals Pollutants Forensic chemistry Clinical medicine Antibiotics, sedatives, steroids, analgesics Amino acids, proteins, carbohydrates, lipids Artificial sweeteners, antioxidants, aflatoxins, additives Condensed aromatics, surfactants, propellants, dyes Pesticides, herbicides, phenols, polychlorinated biphenyls (PCBs) Dmgs. poisons, blood alcohol, narcotics Bile acids, drug metabolites, urine extracts, estrogens... [Pg.985]

Mechanisms of biological ion transport-carriers, channels and pumps in artificial lipid membranes. P. Lauger, Angew. Chem.,Int. Ed. Engl., 1985, 24, 905 (265). [Pg.70]

Lung surfactant is composed mainly of lipid with some proteins and carbohydrate and prevents the alveoli from collapsing. Surfactant activity is largely attributed to dipalmitoylphosphatidylcholine, which is synthesized shortly before parturition in full-term infants. Deficiency of lung surfactant in the lungs of many preterm newborns gives rise to respiratory distress syndrome. Administration of either natural or artificial surfactant has been of therapeutic benefit. [Pg.202]

Artificial membrane systems can be prepared by appropriate techniques. These systems generally consist of mixtures of one or more phospholipids of natural or synthetic origin that can be treated (eg, by using mild sonication) to form spherical vesicles in which the lipids form a bilayer. Such vesicles, surrounded by a lipid bilayer, are termed liposomes. [Pg.421]

The ion channel receptors are relatively simple in functional terms because the primary response to receptor activation is generated by the ion channel which is an integral part of the protein. Therefore, no accessory proteins are needed to observe the response to nicotinic AChR activation and the full functioning of the receptor can be observed by isolating and purifying the protein biochemically and reconstituting the protein in an artificial lipid membrane. In contrast, the G-protein-coupled receptors require both G-proteins and those elements such as phospholipase-C illustrated in Fig. 3.1, in order to observe the response to receptor activation (in this case a rise in intracellular calcium concentration resulting from the action of IP3 on intracellular calcium stores). [Pg.60]

Lancrajan, 1. et al.. Carotenoid incorporation into natural membranes from artificial carriers liposomes and P-cyclodextrins, Chem. Phys. Lipids, 112, 1, 2001. [Pg.328]

The lipid molecule is the main constituent of biological cell membranes. In aqueous solutions amphiphilic lipid molecules form self-assembled structures such as bilayer vesicles, inverse hexagonal and multi-lamellar patterns, and so on. Among these lipid assemblies, construction of the lipid bilayer on a solid substrate has long attracted much attention due to the many possibilities it presents for scientific and practical applications [4]. Use of an artificial lipid bilayer often gives insight into important aspects ofbiological cell membranes [5-7]. The wealth of functionality of this artificial structure is the result of its own chemical and physical properties, for example, two-dimensional fluidity, bio-compatibility, elasticity, and rich chemical composition. [Pg.225]

The artificial lipid bilayer is often prepared via the vesicle-fusion method [8]. In the vesicle fusion process, immersing a solid substrate in a vesicle dispersion solution induces adsorption and rupture of the vesicles on the substrate, which yields a planar and continuous lipid bilayer structure (Figure 13.1) [9]. The Langmuir-Blodgett transfer process is also a useful method [10]. These artificial lipid bilayers can support various biomolecules [11-16]. However, we have to take care because some transmembrane proteins incorporated in these artificial lipid bilayers interact directly with the substrate surface due to a lack of sufficient space between the bilayer and the substrate. This alters the native properties of the proteins and prohibits free diffusion in the lipid bilayer [17[. To avoid this undesirable situation, polymer-supported bilayers [7, 18, 19] or tethered bilayers [20, 21] are used. [Pg.226]

For an artificial lipid bilayer of any size scale, it is a general feature that the bilayer acts as a two-dimensional fluid due to the presence of the water cushionlayer between the bilayer and the substrate. Due to this fluidic nature, molecules incorporated in the lipid bilayer show two-dimensional free diffusion. By applying any bias for controlling the diffusion dynamics, we can manipulate only the desired molecule within the artificial lipid bilayer, which leads to the development of a molecular separation system. [Pg.226]

Direct observation of molecular diffusion is the most powerful approach to evaluate the bilayer fluidity and molecular diffusivity. Recent advances in optics and CCD devices enable us to detect and track the diffusive motion of a single molecule with an optical microscope. Usually, a fluorescent dye, gold nanoparticle, or fluorescent microsphere is used to label the target molecule in order to visualize it in the microscope [31-33]. By tracking the diffusive motion of the labeled-molecule in an artificial lipid bilayer, random Brownian motion was clearly observed (Figure 13.3) [31]. As already mentioned, the artificial lipid bilayer can be treated as a two-dimensional fluid. Thus, an analysis for a two-dimensional random walk can be applied. Each trajectory observed on the microscope is then numerically analyzed by a simple relationship between the displacement, r, and time interval, T,... [Pg.227]

Nakanishi, T, Ohwaki, H., Tanaka, H., Murakami, H., Sagara, T. and Nakashima, N. (2004) Electrochemical and chemical reduction of fullerenes C o and C70 embedded in cast films of artificial lipids in aqueous media, f Phys. Chem. B, 108, 7754-7762. [Pg.277]

Pidgeon, C., Venkataram, U. V. Immobilized artificial membrane chromatography supports composed of membrane lipids. Anal. Eiochem. 1989,... [Pg.351]

The oscillations observed with artificial membranes, such as thick liquid membranes, lipid-doped filter, or bilayer lipid membranes indicate that the oscillation can occur even in the absence of the channel protein. The oscillations at artificial membranes are expected to provide fundamental information useful in elucidating the oscillation processes in living membrane systems. Since the oscillations may be attributed to the coupling occurring among interfacial charge transfer, interfacial adsorption, mass transfer, and chemical reactions, the processes are presumed to be simpler than the oscillation in biomembranes. Even in artificial oscillation systems, elementary reactions for the oscillation which have been verified experimentally are very few. [Pg.609]

The survey of over 50 artificial lipid membrane models (pION) in this chapter reveals a new and very promising in vitro GIT model, based on the use of levels of lecithin membrane components higher than those previously reported, the use of negatively charged phospholipid membrane components, pH gradients, and artificial sink conditions. Also, a novel direction is suggested in the search for an ideal in vitro BBB model, based on the salient differences between the properties of the GIT and the BBB. [Pg.118]

Since there would be increased overall lipid concentration in the dodecane solution, we decided to create a sink condition in the acceptor wells, to lower the membrane retention. We discovered that the pH 7.4 buffer saturated with sodium laurel sulfate serves as an excellent artificial sink-forming medium. Since the new PAMPA membranes would possess substantial negative charge, the negatively charged micellar system was not expected to act as an aggressive detergent to the two-component artificial membrane infused in the microfilter. [Pg.171]

Without an artificial sink, the membrane retentions are very high, with many basic probe molecules showing R > 80%. With the imposed sink, many of the retentions dropped by as much as 50%. Furthermore, just 0.5% wt/vol cholesterol in dodecane (in addition to the sink) caused increased retention to drop by at least a further 10-30%. It was not possible to form stable cholesterol-containing lipid models under sink conditions with Avanti s egg lecithin acceptor buffer solutions turned significantly turbid in the untenable model 13.1. [Pg.187]

Sugano, K. Hamada, H. Machida, M. Ushio, H., High throughput prediction of oral absorption Improvement of the composition of the lipid solution used in parallel artificial membrane permeability assay, J. Biomolec. Screen. 6, 189-196 (2001). [Pg.281]

Carotenoids are highly lipophilic an active area of research concerns how carotenoids interact with and affect membrane systems (see Chapters 2 and 10). Also, the lipid solubility of these compounds has important implications for carotenoid intestinal absorption (see Chapter 17) models such as the Caco-2 cell model are being used to conduct detailed studies of carotenoid absorption/ competition for absorption (Chapter 18). The lipid solubility of these carotenoids also leads to the aggregation of carotenoids (see Chapter 3). Carotenoids aggregate both in natural and artificial systems, with implications for carotenoid excited states (see Chapter 8). This has implications for a new indication for carotenoids, namely, serving as potential materials for harnessing solar energy. [Pg.557]

Passive diffusion through the lipid bilayer of the epithelium can be described using the partition coefficient between octanol/water (log P) and A log P (the difference between the partition into octanol/water and heptane/ethylene glycol or heptane/ octanol) [157, 158], The lipophilicity of the drug (log P) (or rather log D at a certain pH) can easily be either measured or calculated, and is therefore generally used as a predictor of drug permeability. Recently, a method using artificial membrane permeation (PAMPA) has also been found to describe the passive diffusion in a similar manner to the Caco-2 cell monolayers [159]. [Pg.118]

A second approach with respect to anisotropic flavin (photo-)chemistry has been described by Trissl 18°) and Frehland and Trissl61). These authors anchored flavins in artificial lipid bilayers by means of C18-hydrocarbon chains at various positions of the chromophore. From fluorescence polarization analysis and model calculations they conclude, that the rotational relaxation time of the chromophore within the membrane is small compared to the fluorescence lifetime (about 2 ns74)). They further obtain the surprising result that the chromophore is localized within the water/lipid interface, with a tilt angle of about 30° (long axis of the chromophore against the normal of the membrane), irrespective of the position where the hydrocarbon chain is bound to the flavin nucleus. They estimate an upper limit of the microviscosity of the membrane of 1 Poise. [Pg.40]

Lipids are generally identified in paint samples by evaluating characteristic ratio values of FA amounts and comparing them with naturally or artificially aged reference paint layers. Molar or weight contents are obtained after quantification based on calibration curves. [Pg.198]


See other pages where Lipid artificial is mentioned: [Pg.391]    [Pg.391]    [Pg.352]    [Pg.469]    [Pg.41]    [Pg.187]    [Pg.362]    [Pg.284]    [Pg.272]    [Pg.52]    [Pg.226]    [Pg.228]    [Pg.410]    [Pg.813]    [Pg.224]    [Pg.54]    [Pg.230]    [Pg.126]    [Pg.131]    [Pg.158]    [Pg.187]    [Pg.301]    [Pg.221]    [Pg.154]    [Pg.48]    [Pg.49]    [Pg.51]    [Pg.318]   
See also in sourсe #XX -- [ Pg.225 ]




SEARCH



© 2024 chempedia.info