Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecule amphiphilic lipid

Another important class of materials which can be successfiilly described by mesoscopic and contimiiim models are amphiphilic systems. Amphiphilic molecules consist of two distinct entities that like different enviromnents. Lipid molecules, for instance, comprise a polar head that likes an aqueous enviromnent and one or two hydrocarbon tails that are strongly hydrophobic. Since the two entities are chemically joined together they cannot separate into macroscopically large phases. If these amphiphiles are added to a binary mixture (say, water and oil) they greatly promote the dispersion of one component into the other. At low amphiphile... [Pg.2375]

The relation between the architecture of the molecules and the spatial morphology into which they assemble has attracted longstanding interest because of their importance in daily life. Lipid molecules are important constituents of the cell membrane. Amphiphilic molecules are of major importance for teclmological applications (e.g., in detergents and the food industry). [Pg.2376]

As schematically shown in Fig. 1C, a carrier is an amphiphilic molecule capable of residing at the membrane aqueous interface with its lipophilic side interacting with the lipid of the membrane, with polar moieties directed outward into the aqueous phase, and with the polar moieties of a chemical nature to induce an ion into interaction. In the process of a carrier interacting and complexing with the ion, it... [Pg.205]

Two principal routes of passive diffusion are recognized transcellular (la —> lb —> lc in Fig. 2.7) and paracellular (2a > 2b > 2c). Lateral exchange of phospholipid components of the inner leaflet of the epithelial bilayer seems possible, mixing simple lipids between the apical and basolateral side. However, whether the membrane lipids in the outer leaflet can diffuse across the tight junction is a point of controversy, and there may be some evidence in favor of it (for some lipids) [63]. In this book, a third passive mechanism, based on lateral diffusion of drug molecules in the outer leaflet of the bilayer (3a > 3b > 3c), wih be hypothesized as a possible mode of transport for polar or charged amphiphilic molecules. [Pg.17]

Lipids have multiple functions in brain 33 Membrane lipids are amphiphilic molecules 34... [Pg.33]

Lipids encompass a wide class of amphiphilic molecules which, along with proteins, form the biological membranes necessary to support cellular function. While the simplest lipids, fatty acids and triglycerides, are not... [Pg.317]

Takayama and coworkers (60) introduced the h.p.l.c. separation technique for such amphiphilic molecules as lipid A, and in earlier experiments they applied paired-ion reverse-phase h.p.l.c. for the preparation of homogeneous fractions deriving from 4,-monophosphated lipid A of S. typhimur-ium. The purified preparations obtained were suitable for f.a.b. - m.s. analysis. However, monophosphated lipid A isolated in this way expressed a considerable heterogeneity with respect to the number and location of 0-acyl residues (60). In order to further improve the purification procedure, as well as to obtain lipid A derivatives suitable for n.m.r. spectroscopy, Qureshi et al. (174) prepared the dimethyl phosphate derivative of S. minnesota (R595) lipid A, which, after purification by reverse-phase h.p.l.c. (C18), could be analyzed by1 H-n.m.r. The n.m.r. spectrum of, for example, the heptaacyl lipid A dimethyl monophosphate fraction, unequivocally revealed 0-acyl substitution [14 0(3-OH)J at position 3 and a free hydroxyl group at position 4 of GlcN(I). [Pg.248]

The continuous availability of trillions of independent microreactors greatly multiplied the initial mixture of extraterrestrial organics and hydrothermal vent-produced chemicals into a rich variety of adsorbed and transformed materials, including lipids, amphiphiles, chiral metal complexes, amino add polymers, and nudeo-tide bases. Production and chiral amplification of polypeptides and other polymeric molecules would be induced by exposure of absorbed amino adds and organics to dehydration/rehydration cydes promoted by heat-flows beneath a sea-level hydro-thermal field or by sporadic subaerial exposure of near-shore vents and surfaces. In this environment the e.e. of chiral amino adds could have provided the ligands required for any metal centers capable of catalyzing enantiomeric dominance. The auto-amplification of a small e.e. of i-amino adds, whether extraterrestrially delivered or fluctuationally induced, thus becomes conceptually reasonable. [Pg.199]

Symmetric amphiphilic molecules, in which two hydrophilic residues are linked by hydrophobic segments, are generally known as bola-lipids based on their resemblance to an old South American hunting weapon. Well-characterized bola amphiphiles are archaebacterial lipids, which usually consist of two glycerol backbones connected by two hydrophobic... [Pg.325]

If one places a very small amount of a lipid on the surface of water, it may affect surface tension in different ways. It may not show any effect (such as in the case of cholesterol), or it may show a drastic decrease in surface tension (such as in the case of stearic acid or tetra-decanol). An amphiphile molecule will adsorb at the... [Pg.69]

The most fascinating characteristic some amphiphile molecules exhibit is that, when mixed with water, they form self-assembly structures. This was already discussed in Chapter 2 on micelle formation. Since most of the biological lipids also exhibit self-assembly structure formation, this subject has been given much attention in the literature (Birdi, 1999). Lipid monolayer studies thus provide a very useful method to obtain information about SAM formation, both concerning technical systems and cell bilayer structures. [Pg.72]

It is found that, even a monolayer of lipid (on water), when compressed can undergo various states. In the following text, the various states of monomolecular films will be described as measured from the surface pressure, n, versus area, A, isotherms, in the case of simple amphiphile molecules. On the other hand, the Il-A isotherms of biopolymers will be described separately since these have a different nature. [Pg.72]

The measurements of n versus A isotherms generally exhibit, when compressed, a sharp break in the isotherms that has been connected to the collapse of the mono-layer under given experimental conditions. The monolayer of some lipids, such as cholesterol, is found to exhibit an unusual isotherm (Figure 4.7). The magnitude of FI increases very little as compression takes place. In fact, the collapse state or point is the most useful molecular information from such studies. It has been found that this is the only method that can provide information about the structure and orientation of amphiphile molecules at the surface of water (Birdi, 1989). [Pg.78]

In the beer industry, foaming behavior is vital to the product. The beer bottle is produced under C02 gas at high pressure. As soon as a beer bottle is opened, the pressure drops and the gas (CO2) is released, which gives rise to foaming. Commonly, the foam stays inside the bottle. Foaming is caused by the presence of different amphiphilic molecules (fatty acids, lipids, and proteins). The foam is very rich as the liquid film is very thick and contains a substantial aqueous phase (such foams are... [Pg.163]

Liposomes and micelles are lipid vesicles composed of self-assembled amphiphilic molecules. Amphiphiles with nonpolar tails (i.e., hydrophobic chains) self-assemble into lipid bilayers, and when appropriate conditions are present, a spherical bilayer is formed. The nonpolar interior of the bilayer is shielded by the surface polar heads and an aqueous environment is contained in the interior of the sphere (Figure 10.3A). Micelles are small vesicles composed of a shell of lipid the interior of the micelle is the hydrophobic tails of the lipid molecules (Figure 10.3B). Liposomes have been the primary form of lipid-based delivery system because they contain an aqueous interior phase that can be loaded with biomacromolecules. The ability to prepare liposomes and micelles from compounds analogous to pulmonary surfactant is frequently quoted as a major advantage of liposomes over other colloidal carrier systems. [Pg.263]

The most common lipid components of cell membranes are phospholipids. The structures of typical representatives of these amphiphilic molecules (with hydrophobic alkyl chains and hydrophilic head group) are illustrated in Fig. 3. [Pg.4]

The lipid part of the membrane is essentially a two-dimensional liquid in which the other materials are immersed and to which the cytoskeleton is anchored. This last statement is not totally correct, as some membrane bound enzymes require the proximity of particular lipids to function properly and are thus closely bound to them. Simple bilayers formed from lipids in which both hydrocarbon chains are fully saturated can have a highly ordered structure, but for this reason tend to be rigid rather than fluid at physiological temperatures. Natural selection has produced membranes which consist of a mixture of different lipids together with other amphiphilic molecules such as cholesterol and some carboxylic acids. Furthermore, in many naturally occurring lipids, one hydrocarbon chain contains a double bond and is thus kinked. Membranes formed from a mixture of such materials can retain a fluid structure. The temperature at which such membranes operate determines a suitable mixture of lipids so that a fluid but stable structure results at this temperature. It will be seen that the lipid part of a membrane must, apart from its two-dimensional character, be disordered to do its job. However, the membrane bound proteins have a degree of order, as will be discussed below. [Pg.152]


See other pages where Molecule amphiphilic lipid is mentioned: [Pg.465]    [Pg.365]    [Pg.231]    [Pg.157]    [Pg.263]    [Pg.265]    [Pg.270]    [Pg.261]    [Pg.34]    [Pg.104]    [Pg.224]    [Pg.259]    [Pg.65]    [Pg.366]    [Pg.139]    [Pg.87]    [Pg.197]    [Pg.204]    [Pg.259]    [Pg.222]    [Pg.279]    [Pg.208]    [Pg.279]    [Pg.4]    [Pg.53]    [Pg.19]    [Pg.86]    [Pg.22]    [Pg.95]    [Pg.294]    [Pg.399]    [Pg.265]   
See also in sourсe #XX -- [ Pg.34 ]




SEARCH



Amphiphilic lipids

Amphiphilic molecules

© 2024 chempedia.info