Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

LC-electrospray tandem

Recently, Noort et al developed a procedure that is based on straightforward isolation of adducted BuChE from plasma by means of affinity chromatography with a procainamide column, followed by pepsin digestion and LC/electrospray tandem MS analysis of a specific nonapeptide containing the phosphonylated active site serine-198 residue (5). This method surpasses the limitations of the fluoride-reactivation method, since it can also deal with dealkylated ( aged ) phosphonylated BuChE. The method allowed the positive analysis of several serum samples of Japanese victims of the terrorist attack in the Tokyo subway in 1995. Furthermore, the method could be applied for detection of ChE modifications induced by, e.g., diethyl paraoxon and pyridostigmine bromide, illustrating the broad scope of this approach. This new approach... [Pg.23]

The concentration of the X-ray contrast agents, diatrizoate, iopamidol, iopromide, and iomeprol, derived from radiological examinations in municipal sewage, sewage treatment plant efQuents, rivers, and groundwater was investigated by Ternes and Hirsch using LC-electrospray tandem MS detection [119,120]. [Pg.126]

High-Performance Liquid Chromatography LC/Electrospray Tandem MS 50 % Lethal Dose Matrix-assisted Laser Desorption Ionization/Time-Of-Flight/Mass Spectrometry propylsulfonic acid... [Pg.448]

Figure 6. Trace level LC/electrospray tandem MS analysis of (S-HETE)Cys-Pro-Phe in pronase digest of albumin (20mg) after purification on Sep-Pak Cl8, measuring the transition m/z 470 (MH+) -a 105. Albumin was isolated from nonexposed blood (A) or from human blood that was exposed to 1 nM (B). Panel C represents the 1 nM digest after spiking with synthetic (S-ffETE)Cys-Pro-Phe. The arrow indicates the peak for (S-ElETE)Cys-Pro-Phe... [Pg.485]

Figure 5.27 Selective detection of lactolated peptides from a tryptic digest of / -lacto-globulins by LC-electrospray-MS-MS, showing (a) the total-ion-cnrrent trace in full-scan mode, and (b) the total-ion-current trace in neutral-loss-scanning mode. Figure from Selective detection of lactolated peptides in hydrolysates by liquid chromatography/ electrospray tandem mass spectrometry , by Molle, D., Morgan, F., BouhaUab, S. and Leonil, J., in Analytical Biochemistry, Volume 259, 152-161, Copyright 1998, Elsevier Science (USA), reproduced with permission from the publisher. Figure 5.27 Selective detection of lactolated peptides from a tryptic digest of / -lacto-globulins by LC-electrospray-MS-MS, showing (a) the total-ion-cnrrent trace in full-scan mode, and (b) the total-ion-current trace in neutral-loss-scanning mode. Figure from Selective detection of lactolated peptides in hydrolysates by liquid chromatography/ electrospray tandem mass spectrometry , by Molle, D., Morgan, F., BouhaUab, S. and Leonil, J., in Analytical Biochemistry, Volume 259, 152-161, Copyright 1998, Elsevier Science (USA), reproduced with permission from the publisher.
Figure 5.64 LC-UV and LC-MS-MS (multiple-reaction monitoring (MRM)) traces from the analysis of a synthetic mixture of four native and five oxidized deoxynucleosides (for nomenclature, see text). Reprinted by permission of Elsevier Science from Comparison of negative- and positive-ion electrospray tandem mass spectrometry for the liquid chromalography-landem mass speclrometry analysis of oxidized deoxynucleosides , by Hua, Y., Wainhaus, S. B., Yang, Y., Shen, L., Xiong, Y., Xu, X., Zhang, F., Bolton, J. L. and van Breemen, R. B., Journal of the American Society for Mass Spectrometry, Vol. 12, pp. 80-87, Copyrighl 2000 by Ihe American Society for Mass Spectrometry. Figure 5.64 LC-UV and LC-MS-MS (multiple-reaction monitoring (MRM)) traces from the analysis of a synthetic mixture of four native and five oxidized deoxynucleosides (for nomenclature, see text). Reprinted by permission of Elsevier Science from Comparison of negative- and positive-ion electrospray tandem mass spectrometry for the liquid chromalography-landem mass speclrometry analysis of oxidized deoxynucleosides , by Hua, Y., Wainhaus, S. B., Yang, Y., Shen, L., Xiong, Y., Xu, X., Zhang, F., Bolton, J. L. and van Breemen, R. B., Journal of the American Society for Mass Spectrometry, Vol. 12, pp. 80-87, Copyrighl 2000 by Ihe American Society for Mass Spectrometry.
Bai F et al (2006) Determination of lapatinib (GW572016) in human plasma by liquid chromatography electrospray tandem mass spectrometry (LC-ESI-MS/MS). J Chromatogr B Analyt Technol Biomed Life Sci 831 169-175... [Pg.244]

Abbara C, Bardot I, Cailleux A, Lallement G, Le Bouil A, Turcant A, Clair P, Diquet B (2008) High-performance liquid chromatography coupled with electrospray tandem mass spectrometry (LC/MS/MS) method for the simultaneous determination of diazepam, atropine and pralidoxime in human plasma. J Chromatogr B 874 42-50... [Pg.343]

The introduction of ESI- and APCI-MS has improved the potential of LC-MS. The work of Wilson et al. (127) using crown ether derivatives of TAD has demonstrated that adducts with vitamin D using this reagent can be readily formed and that electrospray MS detection limits are close to physiological concentrations. Although at the present time these methods appear to have potentially sufficient sensitivity for use for the measurement of plasma concentrations, no fuUy evaluated method using LC-MS has been described, although capillary HPLC electrospray tandem mass spectrometry has been used to study in vitro metabolism of... [Pg.138]

ESI-MS/MS electrospray tandem mass spectrometry GC-MS gas chromatography-mass spectrometry LC-MS/MS liquid chromatography-tandem mass spectrometry. [Pg.256]

See footnote cto Table3 LC/PB/MS = hquid chromatography/particle beam mass spectrometry LC/APcl/ESl-MS/MS = liquid chromtography/atmospheric pressure chemical ionization/electrospray ionization tandem mass spectrometry LC/FTIR = Fourier transform infrared LC/TSP-MS/MS = liquid chromatography/thermospray tandem mass spectrometry LC/TSP-MS = liquid chromatography/thermospray mass spectrometry. [Pg.423]

Liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS)... [Pg.1320]

The mass spectra of mixtures are often too complex to be interpreted unambiguously, thus favouring the separation of the components of mixtures before examination by mass spectrometry. Nevertheless, direct polymer/additive mixture analysis has been reported [22,23], which is greatly aided by tandem MS. Coupling of mass spectrometry and a flowing liquid stream involves vaporisation and solvent stripping before introduction of the solute into an ion source for gas-phase ionisation (Section 1.33.2). Widespread LC-MS interfaces are thermospray (TSP), continuous-flow fast atom bombardment (CF-FAB), electrospray (ESP), etc. Also, supercritical fluids have been linked to mass spectrometry (SFE-MS, SFC-MS). A mass spectrometer may have more than one inlet (total inlet systems). [Pg.353]

LC-TSP-MS without tandem mass capabilities has only met with limited success for additive analysis in most laboratories. Thermospray ionisation was especially applied between 1987 and 1992 in combination with LC-MS for a wide variety of compound classes, e.g. dyes (Fig. 7.31). Thermospray, particle-beam and electrospray LC-MS were used for the analysis of 14 commercial azo and diazo dyes [594]. No significant problems were met in the LC-TSP-MS analysis of neutral and basic azo dyes [594,595], at variance with that of thermolabile sulfonated azo dyes [596,597], LC-TSP-MS has been used to elucidate the structure of Basic Red 14 [598]. The applications of LC-TSP-MS and LC-TSP-MS in dye analysis have been reviewed [599]. [Pg.513]

For confirmatory assay, liquid chromatography-tandem mass spectrometry (LC-MS/MS) is becoming more frequently used in the analysis of OTC owing to its high sensitivity and ability. Electrospray ionization (ESI) [55-57] and atmospheric pressure chemical ionization (APCI) [41] methods combined with tandem mass spectrometry are favored because of their higher sensitivity and better reproducibility. Hamscher et al. [58] developed a method for the determination of persistent TC residues in soil fertilized with manure by HPLC tandem mass spectrometry, MS-MS, and confirmation by MS-MS-MS. Zhu et al. [59] developed an LC-tandem mass spectrometry for the analysis of common tetracyclines in water. The detection limit for oxytetracycline was 0.21 pg/L. Lykkeberg et al. [60] used LC-MS/MS for determination of oxytetracycline and its impurities EOTC, TC, ETC, ADOTC, oc-AOTC, and /i-AOTC. [Pg.111]

D1 (10,17S-docosatriene) from DHA using tandem liquid chromatography-photodiode array-electrospray ionization-tandem mass spectrometry (LC-PDA-ESI-MS-MS)-based lipidomic analysis have been documented in ischemic brain [4] and retinal pigment epithelium [5], This new lipid is called neuroprotectin D1 (1) because of its neuro-protectiveproperties in brain ischemia-reperfusion [4] and in oxidative stress-challenged retinal pigment epithelial cells [5] (2) because of its potent ability to inactivate proapoptotic signaling (see apoptosis, Ch. 35) [5] and (3) because it is the first identified neuroprotective mediator derived from DHA. [Pg.577]

Traditional methodologies for structural identification of trace level impurities in drng substances/products usually involve fractionation of each impurities using a scaled-np analytical chromatographic method, followed by off-line spectroscopic analysis. Coupling of HPLC separation and electrospray mass spectrometry allows on-line acquisition of full scan mass spectra and generation of tandem mass spectrometric data. LC/ESI MS has revolntionized trace analysis for qnalitative and quantitative studies in pharmaceutical analysis. [Pg.548]

In tandem MS mode, because the product ions are recorded with the same TOF mass analyzers as in full scan mode, the same high resolution and mass accuracy is obtained. Isolation of the precursor ion can be performed either at unit mass resolution or at 2-3 m/z units for multiply charged ions. Accurate mass measurements of the elemental composition of product ions greatly facilitate spectra interpretation and the main applications are peptide analysis and metabolite identification using electrospray iomzation [68]. In TOF mass analyzers accurate mass determination can be affected by various parameters such as (i) ion intensities, (ii) room temperature or (iii) detector dead time. Interestingly, the mass spectrum can be recalibrated post-acquisition using the mass of a known ion (lock mass). The lock mass can be a cluster ion in full scan mode or the residual precursor ion in the product ion mode. For LC-MS analysis a dual spray (LockSpray) source has been described, which allows the continuous introduction of a reference analyte into the mass spectrometer for improved accurate mass measurements [69]. The versatile precursor ion scan, another specific feature of the triple quadrupole, is maintained in the QqTOF instrument. However, in pre-... [Pg.35]


See other pages where LC-electrospray tandem is mentioned: [Pg.434]    [Pg.434]    [Pg.440]    [Pg.280]    [Pg.613]    [Pg.1139]    [Pg.582]    [Pg.570]    [Pg.2626]    [Pg.176]    [Pg.124]    [Pg.253]    [Pg.277]    [Pg.175]    [Pg.53]    [Pg.314]    [Pg.401]    [Pg.420]    [Pg.514]    [Pg.119]    [Pg.33]    [Pg.48]    [Pg.175]    [Pg.88]    [Pg.221]    [Pg.150]    [Pg.178]    [Pg.19]    [Pg.348]   
See also in sourсe #XX -- [ Pg.126 ]




SEARCH



Electrospray tandem

© 2024 chempedia.info