Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chromatographic analytical method

There are many other useful analytical methods. Chromatographic methods such as gas chromatography (GC) and high-performance liquid chromatography (HPLC) are used daily for identification and estimation of the purity of a synthetic product. Chiroptical methods, such as circular dichroism (CD) spectroscopy, are also important especially in studying the relationships between absolute configuration and bioactivity of biofunctional molecules. In later chapters I will give some examples of application of CD spectroscopy in enantioselective synthesis. [Pg.14]

Separatory and Analytical Methods Chromatographic Methods Gas-Liquid Chromatography Thin-layer Chromatography High-pressure Liquid Chromatography Column Chromatography Electrophoresis Other Analytical Methods... [Pg.297]

However, chromatographic processes stiH have a considerable appHcabiHty (106) (see Analytical methods). For instance, in small-scale operations, the greater simplicity of the chromatograph may more than compensate economically for the larger adsorbent inventory and desorbent usage. [Pg.302]

Integration of the peaks for the two diastereomers accurately quantifies the relative amounts of each enantiomer within the mixture. Such diastereometic derivatives may also be analy2ed by more accurate methods such as gc or hplc. One drawback to diastereometic detivatization is that it requites at least 15 mg of material, which is likely to be material painstakingly synthesized, isolated, and purified. The use of analytical chiral chromatographic methods allows for the direct quantification of enantiomeric purity, is highly accurate to above 99.8% ee, and requites less than one milligram of material. [Pg.250]

Air Monitoring. The atmosphere in work areas is monitored for worker safety. Volatile amines and related compounds can be detected at low concentrations in the air by a number of methods. Suitable methods include chemical, chromatographic, and spectroscopic techniques. For example, the NIOSH Manual of Analytical Methods has methods based on gas chromatography which are suitable for common aromatic and aHphatic amines as well as ethanolamines (67). Aromatic amines which diazotize readily can also be detected photometrically using a treated paper which changes color (68). Other methods based on infrared spectroscopy (69) and mass spectroscopy (70) have also been reported. [Pg.264]

An analytical method vahdation study should include demonstration of the accuracy, precision, specificity, limits of detection and quantitation, linearity, range, and interferences. Additionally, peak resolution, peak tailing, and analyte recovery are important, especially in the case of chromatographic methods (37,38). [Pg.369]

A definitive method for stmctural deterrnination is x-ray crystallography. Extensive x-ray crystal stmcture deterrninations have been done on a wide variety of steroids and these have been collected and Hsted (270). In addition, other analytical methods for steroid quantification or stmcture determination include, mass spectrometry (271), polarography, fluorimetry, radioimmunoassay (264), and various chromatographic techniques (272). [Pg.448]

Modem analytical techniques have been developed for complete characteri2ation and evaluation of a wide variety of sulfonic acids and sulfonates. The analytical methods for free sulfonic acids and sulfonate salts have been compiled (28). Titration is the most straightforward method of evaluating sulfonic acids produced on either a laboratory or an iadustrial scale (29,30). Spectroscopic methods for sulfonic acid analysis iaclude ultraviolet spectroscopy, iafrared spectroscopy, and and nmr spectroscopy (31). Chromatographic separation techniques, such as gc and gc/ms, are not used for free... [Pg.98]

Analytical Methods. A method has been described for gas chromatographic analysis of trichloromethanesulfenyl chloride as well as of other volatile sulfur compounds (62). A method has been recommended for determining small amounts of trichloromethanesulfenyl chloride in air or water on the basis of a color-forming reaction with resorcinol (63). [Pg.132]

Several quantitative procedures for concentrations above 0.1 vol % are available. Gas chromatographic analysis (78) is particularly useful because it is fast, accurate, and relatively inexpensive. The standard wet-chemical, analytical method (76) takes advantage of the reaction between iodine pentoxide and carbon monoxide at 423 K. [Pg.53]

Although GC/MS is the most widely used analytical method that combines a chromatographic separation with the identification power of mass spectrometry, it is not the only one. Chemists have coupled mass spectrometers to most of the instruments that are used to separate mixtures. Perhaps the ultimate is mass spectrometry/mass spectrometry (MS/MS), in which one mass spectrometer generates and separates the molecular ions of the components of a mixture and a second mass spectrometer examines their fragmentation patterns ... [Pg.573]

Saturated solutions of some reagents (T) 829 Schoniger oxygen flask see Oxygen flask Schwarzenbach classification 53 Screened indicators 268 Sebacic acid 469 Secondary pH standards 831 Selective ion meters 567 Selectivity coefficient, 559 in EDTA titrations, 312 in fluorimetry, 733 of analytical methods, 12 Selenium, D. of as element, (g) 465 Semi-log graph paper 572 Sensitivity (fl) 834, (fu) 732 Separation coefficient 163, 196 Separations by chromatographic methods, 13, 208. 233, 249... [Pg.873]

Gravimetric, photometric, chromatographic, enzymatic, and microbiological methods for the determination of amino acids are reviewed and discussed. Marked advances have been made during the present decade in methods applicable to the determination of amino acids, and with the development of new analytical methods it should soon be possible to determine all the amino acids of biological importance with a degree of accuracy sufficient for practical as well as many theoretical purposes. [Pg.13]

The contemporary chromatograph used for analytical purposes is a very complex instrument that may operate at pressures up to 10,000 p.s.i.and provide flow rates that range from a few microliters per minute to 10 or 20 ml/minute. Solutes can be detected easily at concentration levels as low as lxlO-9 g/ml and a complete analysis can be carried out on a few micrograms of sample in a few minutes. The range of liquid chromatographs that is available extends from the relatively simple and inexpensive instrument, suitable for the majority of routine analyses, to the very elaborate and expensive machines that are more appropriate for analytical method development. [Pg.123]

Zweig G, Sherma J. 1972. Thiodan (endosulfan). In Zweig G, Sherma J, eds. Analytical methods for pesticides and plant growth regulators. Vol. VI. Gas chromatographic analysis. New York, NY Academic Press, 511-513. [Pg.320]

However, compared with the traditional analytical methods, the adoption of chromatographic methods represented a signihcant improvement in pharmaceutical analysis. This was because chromatographic methods had the advantages of method specihcity, the ability to separate and detect low-level impurities. Specihcity is especially important for methods intended for early-phase drug development when the chemical and physical properties of the active pharmaceutical ingredient (API) are not fully understood and the synthetic processes are not fully developed. Therefore the assurance of safety in clinical trials of an API relies heavily on the ability of analytical methods to detect and quantitate unknown impurities that may pose safety concerns. This task was not easily performed or simply could not be carried out by classic wet chemistry methods. Therefore, slowly, HPLC and GC established their places as the mainstream analytical methods in pharmaceutical analysis. [Pg.54]

The PSP toxins represent a real challenge to the analytical chemist interested in developing a method for their detection. There are a great variety of closely related toxin structures (Figure 1) and the need exists to determine the level of each individually. They are totally non-volatile and lack any useful UV absorption. These characteristics coupled with the very low levels found in most samples (sub-ppm) eliminates most traditional chromatographic techniques such as GC and HPLC with UVA S detection. However, by the conversion of the toxins to fluorescent derivatives (J), the problem of detection of the toxins is solved. It has been found that the fluorescent technique is highly sensitive and specific for PSP toxins and many of the current analytical methods for the toxins utilize fluorescent detection. With the toxin detection problem solved, the development of a useful HPLC method was possible and somewhat straightforward. [Pg.67]

Modern sensitive chromatographic and voltammetric techniques now make it possible to estimate the release of unlabelled endogenous transmitter from slices of brain tissue (commonly the hippocampus and striatum) or spinal cord (Fig. 4.4). However, whatever analytical method is used, the thickness of the slice is paramount. It is important to maintain the balance between preserving the integrity of the tissue (the thicker the slice, the better) against maintaining tissue viability by perfusion with oxygenated aCSF (the thinner the slice, the better). [Pg.86]

Radioisotope-labeled nitrosamines have proven valuable in development of analytical methods and for demonstrating efficiency of recovery of nitrosamines from tobacco products and smoke (37-39). The very high specific activity required for low part-per-billion determinations has discouraged most analysts from using this approach. Unless a radiochromatographic detector with adequate sensitivity is available, samples must be counted independently of the final chromatographic determination, and one of the advantages of internal standardization, correction for variation in volume injected, is lost. [Pg.339]

In contrast to the well-established methods for identifying and quantifying naturally occurring chlorophylls, very few reports concern quantitative analysis of chlorophyllin copper complexes in color additives and in foodstuffs. Analytical methods proposed are based on spectral properties, elemental analysis, chromatographic separation, and molecular structure elucidation or a combination of these procedures. [Pg.442]

In many cases, determination of total anthocyanin content may not be enough and information about specific individual pigments will be required. Typically this situation arises in research situations. One analytical method for the quantitative determination of individual anthocyanins involves their separation from a mixture and measurement of each individual pigment. Chromatographic separation of... [Pg.485]

The most significant differences (i.e. independence) in the analytical methods are provided in the final chromatographic separation and detection step using GC/ MS and LC-FL. GC and reversed-phase LG provide significantly different separation mechanisms for PAHs and thus provide the independence required in the separation. The use of mass spectrometry (MS) for the GC detection and fluorescence spectroscopy for the LG detection provide further independence in the methods, e.g. MS can not differentiate among PAH isomers whereas fluorescence spectroscopy often can. For the GC/MS analyses the 5% phenyl methylpolysiloxane phase has been a commonly used phase for the separation of PAHs however, several important PAH isomers are not completely resolved on this phase, i.e. chrysene and triphenylene, benzo[b]fluoranthene and benzofjjfluoranthene, and diben-z[o,h]anthracene and dibenz[a,c]anthracene. To achieve separation of these isomers, GC/MS analyses were also performed using two other phases with different selectivity, a 50% phenyl methylpolysiloxane phase and a smectic liquid crystalline phase. [Pg.94]


See other pages where Chromatographic analytical method is mentioned: [Pg.809]    [Pg.809]    [Pg.77]    [Pg.78]    [Pg.53]    [Pg.331]    [Pg.201]    [Pg.539]    [Pg.276]    [Pg.6]    [Pg.17]    [Pg.33]    [Pg.417]    [Pg.322]    [Pg.24]    [Pg.65]    [Pg.69]    [Pg.535]    [Pg.265]    [Pg.330]    [Pg.13]    [Pg.562]    [Pg.35]    [Pg.156]    [Pg.146]    [Pg.147]    [Pg.498]    [Pg.429]   
See also in sourсe #XX -- [ Pg.321 ]




SEARCH



Application of Chromatographic Methods to Specific Analytical Problems

Chromatographic methods

© 2024 chempedia.info