Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Properties isomers

In summary, property-property relationships of environmental contaminates and their isomers are useful in order to estimate other isomer properties which have never been measured or are not readily available in the literature. This can be done by developing property-property regression equations for the particular isomers of interests. In addition, environmental fate and behavior of such contaminants and their isomers could also be predicted using such relation-... [Pg.286]

CH3)2C CHCH2CH2C(CH3)OHCH CH2. Linalool is the /-isomer, coridandrol is the d-isomer. Properties Colorless liquid odor similar to that of bergamot oil and French lavender. D 0.858-0.868 (25C), bp 195-199C, angular rotation -2 to +2 degrees. Soluble in alcohol, ether, fixed oils. Combustible. [Pg.757]

CH2C CH CHCH[CH(CH3)2]CH2CH2. A monocyclic terpene occurring as (1) d- and (2) /-optical isomers. Properties (1) Mobile oil pleasant odor burning taste. D 0.8520 (20C), bp 171-172C, refr index 1.4788 (2) mobile oil, d 0.8497 (15C), bp 178-179, flash p (TCC) 120F (48.9C), refr index 1.4800. Both are insoluble in water and alcohol soluble in ether. Combustible. [Pg.966]

Organic compounds with the same molecular formula, but different structures, are called isomers. Isomers properties may be very different. For example, ethanol and dimethyl ether have the same molecular formula, C2H( 0. Ethauol is a colorless... [Pg.10]

Because of the existence of numerous isomers, hydrocarbon mixtures having a large number of carbon atoms can not be easily analyzed in detail. It is common practice either to group the constituents around key components that have large concentrations and whose properties are representative, or to use the concept of petroleum fractions. It is obvious that the grouping around a component or in a fraction can only be done if their chemical natures are similar. It should be kept in mind that the accuracy will be diminished when estimating certain properties particularly sensitive to molecular structure such as octane number or crystallization point. [Pg.86]

Beyond propane, it is possible to arrange the carbon atoms in branched chains while maintaining the same number of hydrogen atoms. These alternative arrangements are called isomers, and display slightly different physical properties (e.g. boiling point, density, critical temperature and pressure). Some examples are shown below ... [Pg.91]

As another example, we shall consider the influence of the number of descriptors on the quality of learning. Lucic et. al. [3] performed a study on QSPR models employing connectivity indices as descriptors. The dataset contained 18 isomers of octane. The physical property for modehng was boiling points. The authors were among those who introduced the technique of orthogonahzation of descriptors. [Pg.207]

Chi indices for the various isomers of hexane. (Figure adapted in part from Hall L H and L B Kier 1991. The ir Connectivity Chi Indexes and Kappa Shape Indexes in Structure-property Modeling. In Lipkowitz K B and id (Editors) Reviews in Computational Chemistiy Volume 2. New York, VCH Publishers, pp. 367-422.)... [Pg.688]

Sketch the molecules on graph paper to help in determining the atomic coordinates. This is the first use of molecular geometry, a property that will become increasingly important as we go on. At this stage, the geometries are approximate the difference, for example, between cis and trans isomer s is ignored. [Pg.258]

In the introduction we noted that both Berzelius and Wohler were fascinated by the fact that two different compounds with different properties ammonium cyanate and urea pos sessed exactly the same molecular formula CH4N2O Berzelius had studied examples of similar phenomena earlier and invented the word isomer to describe different compounds that have the same molecular formula... [Pg.23]

Alkenes resemble alkanes m most of their physical properties The lower molecular weight alkenes through 4 are gases at room temperature and atmospheric pressure The dipole moments of most alkenes are quite small Among the 4 isomers 1 butene cis 2 butene and 2 methylpropene have dipole moments m the 0 3-05 D range trans 2 butene has no dipole moment Nevertheless we can learn some things about alkenes by looking at the effect of substituents on dipole moments... [Pg.196]

In the preceding chapter you learned that nucleophilic addition to the carbonyl group IS one of the fundamental reaction types of organic chemistry In addition to its own reactivity a carbonyl group can affect the chemical properties of aldehydes and ketones m other ways Aldehydes and ketones having at least one hydrogen on a carbon next to the carbonyl are m equilibrium with their enol isomers... [Pg.755]

Stereochemistry (Chapter 7) Chemistry in three dimensions the relationship of physical and chemical properties to the spatial arrangement of the atoms in a molecule Stereoelectron ic effect (Section 5 16) An electronic effect that depends on the spatial arrangement between the or bitals of the electron donor and acceptor Stereoisomers (Section 3 11) Isomers with the same constitu tion but that differ in respect to the arrangement of their atoms in space Stereoisomers may be either enantiomers or diastereomers... [Pg.1294]

When two different substituents are attached to each carbon atom of the double bond, cis-trans isomers can exist. In the case of c T-2-butene (Fig. 1.11a), both methyl groups are on the same side of the double bond. The other isomer has the methyl groups on opposite sides and is designated as rran5--2-butene (Fig. l.llb). Their physical properties are quite different. Geometric isomerism can also exist in ring systems examples were cited in the previous discussion on conformational isomers. [Pg.43]

Multiple Chiral Centers. The number of stereoisomers increases rapidly with an increase in the number of chiral centers in a molecule. A molecule possessing two chiral atoms should have four optical isomers, that is, four structures consisting of two pairs of enantiomers. However, if a compound has two chiral centers but both centers have the same four substituents attached, the total number of isomers is three rather than four. One isomer of such a compound is not chiral because it is identical with its mirror image it has an internal mirror plane. This is an example of a diaster-eomer. The achiral structure is denoted as a meso compound. Diastereomers have different physical and chemical properties from the optically active enantiomers. Recognition of a plane of symmetry is usually the easiest way to detect a meso compound. The stereoisomers of tartaric acid are examples of compounds with multiple chiral centers (see Fig. 1.14), and one of its isomers is a meso compound. [Pg.47]

Traditionally, chiral separations have been considered among the most difficult of all separations. Conventional separation techniques, such as distillation, Hquid—Hquid extraction, or even some forms of chromatography, are usually based on differences in analyte solubiUties or vapor pressures. However, in an achiral environment, enantiomers or optical isomers have identical physical and chemical properties. The general approach, then, is to create a "chiral environment" to achieve the desired chiral separation and requires chiral analyte—chiral selector interactions with more specificity than is obtainable with conventional techniques. [Pg.60]

The value of many chemical products, from pesticides to pharmaceuticals to high performance polymers, is based on unique properties of a particular isomer from which the product is ultimately derived. Eor example, trisubstituted aromatics may have as many as 10 possible geometric isomers whose ratio ia the mixture is determined by equiHbrium. Often the purity requirement for the desired product iacludes an upper limit on the content of one or more of the other isomers. This separation problem is a compHcated one, but one ia which adsorptive separation processes offer the greatest chances for success. [Pg.303]

The sales brochures of the manufacturers describe the plasticizer range alcohols available on the merchant market (18). Typical properties of several commercial plasticizer range alcohols are presented in Table 8. Because in most cases these ate mixtures of isomers or alcohols with several carbon chains, the properties of a particular material can vary somewhat from manufacturer to manufacturer. Both odd and even carbon chain alcohols are available, in both linear and highly branched versions. Examples of the composition of several mixtures are given in Table 9. [Pg.445]

Thiothionyl Fluoride and Difluorodisulfane. Thiothionyl fluoride [1686-09-9] S=SF2, and difluorodisulfane [13709-35-8] FSSF, are isomeric compounds which may be prepared as a mixture by the action of various metal fluorides on sulfur vapor or S2CI2 vapor. Chemically, the two isomers are very similar and extremely reactive. However, in the absence of catalytic agents and other reactive species, FSSF is stable for days at ordinary temperatures and S=SF2 may be heated to 250°C without significant decomposition (127). Physical properties of the two isomers are given in Table 6. The microwave spectmm of S=SF2 has been reported (130). [Pg.244]

Terpolymers from dimethy]-a.-methy]styrene (3,4-isomer preferred)—a-methylstyrene—styrene blends in a 1 1 1 weight ratio have been shown to be useful in adhesive appHcations. The use of ring-alkylated styrenes aids in the solubiHty of the polymer in less polar solvents and polymeric systems (75). Monomer concentrations of no greater than 20% and temperatures of less than —20° C are necessary to achieve the desired properties. [Pg.356]

Each isomer has its individual set of physical and chemical properties however, these properties are similar (Table 6). The fundamental chemical reactions for pentanes are sulfonation to form sulfonic acids, chlorination to form chlorides, nitration to form nitropentanes, oxidation to form various compounds, and cracking to form free radicals. Many of these reactions are used to produce intermediates for the manufacture of industrial chemicals. Generally the reactivity increases from a primary to a secondary to a tertiary hydrogen (37). Other properties available but not Hsted are given in equations for heat capacity and viscosity (34), and saturated Hquid density (36). [Pg.403]

Many of the physical properties are not affected by the optical composition, with the important exception of the melting poiat of the crystalline acid, which is estimated to be 52.7—52.8°C for either optically pure isomer, whereas the reported melting poiat of the racemic mixture ranges from 17 to 33°C (6). The boiling poiat of anhydrous lactic acid has been reported by several authors it was primarily obtained duriag fractionation of lactic acid from its self-esterification product, the dimer lactoyUactic acid [26811-96-1]. The difference between the boiling poiats of racemic and optically active isomers of lactic acid is probably very small (6). The uv spectra of lactic acid and dilactide [95-96-5] which is the cycHc anhydride from two lactic acid molecules, as expected show no chromophores at wavelengths above 250 nm, and lactic acid and dilactide have extinction coefficients of 28 and 111 at 215 nm and 225 nm, respectively (9,10). The iafrared spectra of lactic acid and its derivatives have been extensively studied and a summary is available (6). [Pg.512]

Physical Properties. Mahc acid crystallines from aqueous solutions as white, translucent, anhydrous crystal. The S(—) isomer melts at 100-103°C (1) and the R(+) isomer at 98-99°C (2). On heating, D,L-mahc acid decomposes at ca 180°C by forming fumaric acid and maleic anhydride. Under normal conditions, malic acid is stable under conditions of high humidity, it is hygroscopic. [Pg.520]

Commercial mesityl oxide can contain 5—20% of the P,y-unconjugated isomer isomesityl oxide [141-79-7] (4-meth5l-4-pentene-2-one). At equihbrium, the mixture contains 91% of the a,P-mesityl oxide and 9% of the P,y-isomer (174—176). Kquilihrium is cataly2ed by either acid or alkaU. Techniques to isolate the isomers have been reported (174,176), and some physical properties of isomesityl oxide are reported ia Table 1. [Pg.494]

Maleic and fiimaric acids have physical properties that differ due to the cis and trans configurations about the double bond. Aqueous dissociation constants and solubiUties of the two acids show variations attributable to geometric isomer effects. X-ray diffraction results for maleic acid (16) reveal an intramolecular hydrogen bond that accounts for both the ease of removal of the first carboxyl proton and the smaller dissociation constant for maleic acid compared to fumaric acid. Maleic acid isomerizes to fumaric acid with a derived heat of isomerization of —22.7 kJ/mol (—5.43 kcal/mol) (10). The activation energy for the conversion of maleic to fumaric acid is 66.1 kJ/mol (15.8 kcal/mol) (24). [Pg.449]


See other pages where Properties isomers is mentioned: [Pg.408]    [Pg.639]    [Pg.408]    [Pg.639]    [Pg.59]    [Pg.225]    [Pg.226]    [Pg.285]    [Pg.430]    [Pg.655]    [Pg.102]    [Pg.173]    [Pg.136]    [Pg.68]    [Pg.81]    [Pg.119]    [Pg.122]    [Pg.315]    [Pg.245]    [Pg.215]    [Pg.274]    [Pg.276]    [Pg.296]    [Pg.71]   


SEARCH



Conformational isomers basic properties

Constitutional isomers physical properties

Functional isomers, basic properties

Geometrical isomers physical properties

Geometrical isomers properties

Geometrical isomers, surface properties

Optical isomers, basic properties

Position isomers, basic properties

Properties of Isomers

Structure-property Relationship for Isomers

Trans isomers properties

Trans-isomers symmetry properties, 64

© 2024 chempedia.info