Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Iron carbonyl process

Ca.rbonylProcess. Cmde nickel also can be refined to very pure nickel by the carbonyl process. The cmde nickel and carbon monoxide (qv) react at ca 100°C to form nickel carbonyl [13463-39-3] Ni(CO)4, which upon further heating to ca 200—300°C, decomposes to nickel metal and carbon monoxide. The process is highly selective because, under the operating conditions of temperature and atmospheric pressure, carbonyls of other elements that are present, eg, iron and cobalt, are not readily formed. [Pg.3]

Pure iron, when needed, is produced on a relatively small scale by the reduction of the pure oxide or hydroxide with hydrogen, or by the carbonyl process in which iron is heated with carbon monoxide under pressure and the Fe(CO)5 so formed decomposed at 250°C to give the powdered metal. However, it is not in the pure state but in the form of an enormous variety of steels that iron finds its most widespread uses, the world s annual production being over 700 million tonnes. [Pg.1071]

In contrast to thermal uncatalyzed reactions of /V-acylsulfinylamines with aryl isocyanates which give rise to azoarenes,188 the cobalt or iron carbonyl-catalyzed process gives additionally 3,5-dioxo-l,2,4-triphenyl-1,2,4-triazolidine (Scheme 124).189 The only possible restriction on this simple urazole synthesis would be the expectation that the substituents on the reactants must be the same to prohibit exchange. [Pg.374]

Rather than focusing on the short-time photochemical reactivity, our interest in the spin-forbidden reactions of iron carbonyl fragments has been mainly in the longer-time thermal chemistry of the fragments produced. This is summarized in Scheme 3. As already stated, iron tricarbonyl and tetracarbonyl are known to have triplet ground states, and for many ligands, it is assumed that Fe(CO)3L would also have a triplet ground state. Hence many of the indicated processes are spin-forbidden. [Pg.578]

Magnex A process for removing mineral matter from coal by first rendering it magnetic. The coal is treated with iron carbonyl vapor, which deposits a thin skin of magnetic material on the pyrite and other mineral matter, but not on the coal. Conventional magnetic separation is then used. Developed by Hazen Research in 1976. [Pg.170]

The present paper focuses on the interactions between iron and titania for samples prepared via the thermal decomposition of iron pentacarbonyl. (The results of ammonia synthesis studies over these samples have been reported elsewhere (4).) Since it has been reported that standard impregnation techniques cannot be used to prepare highly dispersed iron on titania (4), the use of iron carbonyl decomposition provides a potentially important catalyst preparation route. Studies of the decomposition process as a function of temperature are pertinent to the genesis of such Fe/Ti02 catalysts. For example, these studies are necessary to determine the state and dispersion of iron after the various activation or pretreatment steps. Moreover, such studies are required to understand the catalytic and adsorptive properties of these materials after partial decomposition, complete decarbonylation or hydrogen reduction. In short, Mossbauer spectroscopy was used in this study to monitor the state of iron in catalysts prepared by the decomposition of iron carbonyl. Complementary information about the amount of carbon monoxide associated with iron was provided by volumetric measurements. [Pg.10]

The solvent process involves treating phthalonitrile with any one of a number of copper salts in the presence of a solvent at 120 to 220°C [10]. Copper(I)chloride is most important. The list of suitable solvents is headed by those with a boiling point above 180°C, such as trichlorobenzene, nitrobenzene, naphthalene, and kerosene. A metallic catalyst such as molybdenum oxide or ammonium molybdate may be added to enhance the yield, to shorten the reaction time, and to reduce the necessary temperature. Other suitable catalysts are carbonyl compounds of molybdenum, titanium, or iron. The process may be accelerated by adding ammonia, urea, or tertiary organic bases such as pyridine or quinoline. As a result of improved temperature maintenance and better reaction control, the solvent method affords yields of 95% and more, even on a commercial scale. There is a certain disadvantage to the fact that the solvent reaction requires considerably more time than dry methods. [Pg.426]

A viable iron carbonyl-mediated reduction process converts acid chlorides and bromoalkanes into aldehydes [3, 6]. Yields are high, with the exception of nitro-benzoyl chloride, and the procedure is generally applicable for the synthesis of alkyl, aryl and a,(i-unsaturated aldehydes from the acid chlorides. The reduction proceeds via the initial formation of the acyl iron complex, followed by hydride transfer and extrusion of the aldehyde (cf. Chapter 8). [Pg.501]

In many respects the apparently analogous reduction of nitroarenes with triruthenium dodecacarbonyl under basic phase-transfer conditions is superior to that of the iron carbonyl-mediated reductions. However, the difference in the dependence of the two processes on the concentration of the aqueous sodium hydroxide and the pressure of the carbon monoxide suggests that they may proceed by different mechanisms. Although the iron-based system is most effective under dilute alkaline conditions in the absence of carbon monoxide, the use of 5M sodium hydroxide is critical for the ruthenium-based system, which also requires an atmosphere of carbon monoxide [11]. The ruthenium-based reduction has been extended to the... [Pg.502]

Many of the syntheses we have seen within this review depend on the carbonylation of a vinylcarbene complex for the generation of the vinylketene species. The ease of this carbonylation process is controlled, to some degree, by the identity of the metal. The electronic characteristics of the metal will clearly have a great effect on the strength of the metal-carbon double bond, and as such this could be a regulating factor in the carbene-ketene transformation. It is interesting to note the comparative reactivity of a (vinylcarbene)chromium species with its iron analogue The former is a fairly stable species, whereas the latter has been shown to carbonylate readily to form the appropriate (vinylketene)iron complex. [Pg.351]

The analysis of the water gas so far given enumerates the chief constituents, but in reality there are traces of other products, such as carbon bisulphide, carbonyl sulphide, and thiophene, derived from the sulphur in the uel, which, minute in quantity, may nevertheless in the certain chemical processes produce appreciable and un-iesirable results from the iron contained in the fuel, ninute amounts of iron carbonyl are formed, which in nost processes in which water gas is used is a matter jf no importance, but if the gas is to be used for ighting with incandescent mantles, its removal is de-.irable. [Pg.81]

Sulfide ores are processed by a number of pyrometallurgical processes roasting, smelting, and converting. During these processes, sulfur and iron are removed to deld a sulfur-deficient copper-nickel matte. Especially after roasting and converting, the nickel in the matte may consist primarily of nickel subsulfide. After physical separation of the copper and nickel sulfides, the nickel is refined electrochemically or by the carbonyl process. The treatment of the matte depends on the end use of the nickel. Alternatively, the sulfide can be roasted to form a nickel oxide sinter that is used directly in steel production. [Pg.167]

The reaction of iron-carbonyl complexes with alkynes led to cyclobutenediones, which is formally a [2 + 1 + 1]-cycloaddition process for the formation of a cyclobutene derivative (Scheme 9.22) [49]. Nevertheless, in this reaction the liberation of the ligand is initiated by addition of stoichiometric amounts of copper] 11) salts and the use of various alkynes leads to interesting products such as 30 in good yields. [Pg.255]

New catalysts have helped increase the conversion and yields. The older, high-pressure processes used zinc-chromium catalysts, but the low-pressure units use highly active copper catalysts. Liquid-entrained micrometer-sized catalysts have been developed that can convert as much as 25 percent per pass. Contact of the synthesis gases with hot iron catalyzes competing reactions and also forms volatile iron carbonyl that fouls the copper catalyst. Some reactors are lined with copper. [Pg.618]

The use of catalysts in chemistry increases reaction speed and lowers reaction temperatures. Metal catalysts are commonly used in many technologies — the detailed knowledge of catalyzed reaction steps can be used to improve efficiency or find new reaction pathways. Bond formation is the reverse process of bond breaking and constitutes an important basic step in a metal catalyzed reaction. In the simplest case, the transfer of an atom/molecule between the sample and the tip in the vertical manipulation procedure involves both bond breaking and bond formation processes. In this case, the substrate-atom/molecule bond is broken and a new bond between the atom/molecule and the tip-apex atom is formed or vice-versa [45]. Such a bond formation was demonstrated by Lee and Ho [46]. They deposited two CO molecules over an adsorbed Fe atom on a Cu(100) surface using the vertical manipulation procedure. Because an adsorbed Fe atom on this surface can accommodate two CO molecules, an Fe(CO)2 iron carbonyl was produced. [Pg.200]

Single-wall carbon nanotubes (SWNTs) can be prepared by laser-vaporization of a graphite source. A newer process uses carbon monoxide as the source of the carbon and is called the HiPco process. The catalyst is generated in situ from iron carbonyl. The SWNTs from the HiPco process are characterized by a smaller diameter and exhibit greater reactivity with organic reagents. [Pg.130]

Carbonylation Processes by Homogeneous Catalysis Coordination Chemistry History Coordination Numbers Geometries Iron Organometallic Chemistry Manganese Organometallic Chemistry Nickel Organometallic Chemistry Rhodium Organometallic Chemistry. [Pg.876]


See other pages where Iron carbonyl process is mentioned: [Pg.14]    [Pg.20]    [Pg.170]    [Pg.576]    [Pg.609]    [Pg.616]    [Pg.130]    [Pg.144]    [Pg.450]    [Pg.281]    [Pg.228]    [Pg.418]    [Pg.47]    [Pg.31]    [Pg.72]    [Pg.147]    [Pg.130]    [Pg.261]    [Pg.20]    [Pg.89]    [Pg.141]    [Pg.591]    [Pg.51]    [Pg.121]    [Pg.113]    [Pg.836]    [Pg.20]    [Pg.629]    [Pg.2087]   
See also in sourсe #XX -- [ Pg.71 ]




SEARCH



Carbonyl process

Carbonylation Iron carbonyl

Carbonylation processes

© 2024 chempedia.info