Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pure iron

Pig-iron or cast iron contains impurities, chiefly carbon (up to 5 ). free or combined as iron carbides. These impurities, some of which form interstitial compounds (p. I I3i with the iron, make it hard and brittle, and it melts fairly sharply at temperatures between 1400 and 1500 K pure iron becomes soft before it melts (at 1812 K). Hence cast iron cannot be forged or welded. [Pg.391]

Pure iron is prepared by reduction of iron(II) oxide with hydrogen, or by electrolysis of an iron(II)-containing aqueous solution. It is a fairly soft metal, existing in different form according to temperature ... [Pg.392]

Pure iron is a silvery white, relatively soft metal and is rarely used commercially. Typical properties are Hsted in Table 1. Electrolytic (99.9% pure) iron is used for magnetic cores (2) (see Magnetic materials, bulk). Native metallic iron is rarely found in nature because iron which commonly exhibits valences of +2 and +3 combines readily with oxygen and sulfur. Iron oxides are the most prevalent form of iron (see Iron compounds). Generally, these iron oxides (iron ores) are reduced to iron and melted in a blast furnace. The hot metal (pig iron) from the blast furnace is refined in steelmaking furnaces to make steel... [Pg.411]

Iron (qv) exists in three aHotropic modifications, each of which is stable over a certain range of temperatures. When pure iron free2es at 1538°C, the body-centered cubic (bcc) 5-modification forms, and is stable to 1394°C. Between 1394 and 912°C, the face-centered cubic (fee) y-modification exists. At 912°C, bcc a-iron forms and prevails at all lower temperatures. These various aHotropic forms of iron have different capacities for dissolving carbon. y-Iron can contain up to 2% carbon, whereas a-iron can contain a maximum of only about 0.02% C. This difference in solubHity of carbon in iron is responsible for the unique heat-treating capabilities of steel The soHd solutions of carbon and other elements in y-iron and a-iron are caHed austenite and ferrite, respectively. [Pg.236]

It has been known for many centuries that iron ore, embedded in burning charcoal, can be reduced to metallic iron (1,2). Iron was made by this method as early as 1200 BC. Consisting almost entirely of pure iron, the first iron metal closely resembled modem wrought iron, which is relatively soft, malleable, ductile, and readily hammer-welded when heated to a sufficientiy high temperature. This metal was used for many purposes, including agricultural implements and various tools. [Pg.373]

Cementite, the term for iron carbide in steel, is the form in which carbon appears in steels. It has the formula Fe C, and thus consists of 6.67 wt % carbon and the balance iron. Cementite is very hard and britde. As the hardest constituent of plain carbon steel, it scratches glass and feldspar, but not quart2. It exhibits about two-thirds the induction of pure iron in a strong magnetic field, but has a much lower Curie temperature. [Pg.384]

Iron occurs in two aHotropic forms, a or 5 and y (see Fig. 15). The temperatures at which these phase changes occur are known as the critical temperatures. For pure iron, these temperatures are 910°C for the d—J phase change and 1390°C for the y—5 phase change. The boundaries in Figure 16 show how these temperatures are affected by composition. [Pg.385]

Shock loading in most metals and alloys produces greater hardening than quasi-static deformation to the same total strain, particularly if the metal undergoes a polymorphic phase transition, such as is observed in pure iron [1]-[10]. Figure 6.1 compares the stress-strain response of an annealed... [Pg.188]

In order to answer these questions as directly as possible we begin by looking at diffusive and displacive transformations in pure iron (once we understand how pure iron transforms we will have no problem in generalising to iron-carbon alloys). Now, as we saw in Chapter 2, iron has different crystal structures at different temperatures. Below 914°C the stable structure is b.c.c., but above 914°C it is f.c.c. If f.c.c. iron is cooled below 914°C the structure becomes thermodynamically unstable, and it tries to change back to b.c.c. This f.c.c. b.c.c. transformation usually takes place by a diffusive mechanism. But in exceptional conditions it can occur by a displacive mechanism instead. To understand how iron can transform displacively we must first look at the details of how it transforms by diffusion. [Pg.76]

Fig. 8.8. Martensites are always coherent with the parent lattice. They grow os thin lenses on preferred planes and in preferred directions in order to cause the least distortion of the lattice. The crystallographic relationships shown here ore for pure iron. Fig. 8.8. Martensites are always coherent with the parent lattice. They grow os thin lenses on preferred planes and in preferred directions in order to cause the least distortion of the lattice. The crystallographic relationships shown here ore for pure iron.
To make martensite in pure iron it has to be cooled very fast at about 10 °C s h Metals can only be cooled at such large rates if they are in the form of thin foils. How, then, can martensite be made in sizeable pieces of 0.8% carbon steel As we saw in the "Teaching Yourself Phase Diagrams" course, a 0.8% carbon steel is a "eutectoid" steel when it is cooled relatively slowly it transforms by diffusion into pearlite (the eutectoid mixture of a + FejC). The eutectoid reaction can only start when the steel has been cooled below 723°C. The nose of the C-curve occurs at = 525°C (Fig. 8.11), about 175°C lower than the nose temperature of perhaps 700°C for pure iron (Fig. 8.5). Diffusion is much slower at 525°C than it is at 700°C. As a result, a cooling rate of 200°C s misses the nose of the 1% curve and produces martensite. [Pg.85]

Figures 11.2-11.6 show how the room temperature microstructure of carbon steels depends on the carbon content. The limiting case of pure iron (Fig. 11.2) is straightforward when yiron cools below 914°C a grains nucleate at y grain boundaries and the microstructure transforms to a. If we cool a steel of eutectoid composition (0.80 wt% C) below 723°C pearlite nodules nucleate at grain boundaries (Fig. 11.3) and the microstructure transforms to pearlite. If the steel contains less than 0.80% C (a hypoeutectoid steel) then the ystarts to transform as soon as the alloy enters the a+ yfield (Fig. 11.4). "Primary" a nucleates at y grain boundaries and grows as the steel is cooled from A3... Figures 11.2-11.6 show how the room temperature microstructure of carbon steels depends on the carbon content. The limiting case of pure iron (Fig. 11.2) is straightforward when yiron cools below 914°C a grains nucleate at y grain boundaries and the microstructure transforms to a. If we cool a steel of eutectoid composition (0.80 wt% C) below 723°C pearlite nodules nucleate at grain boundaries (Fig. 11.3) and the microstructure transforms to pearlite. If the steel contains less than 0.80% C (a hypoeutectoid steel) then the ystarts to transform as soon as the alloy enters the a+ yfield (Fig. 11.4). "Primary" a nucleates at y grain boundaries and grows as the steel is cooled from A3...
Figure 11.9 shows that the hardness of martensite increases rapidly with carbon content. This, again, is what we would expect. We saw in Chapter 8 that martensite is a supersaturated solid solution of C in Fe. Pure iron at room temperature would be b.c.c., but the supersaturated carbon distorts the lattice. [Pg.118]

The densities of pure iron and iron carbide at room temperature are 7.87 and 8.15 Mg m respectively. Calculate the percentage by volume of a and FojC in pearlite. [Pg.124]

Many stainless steels, however, are austenitic (f.c.c.) at room temperature. The most common austenitic stainless, "18/8", has a composition Fe-0.1% C, 1% Mn, 18% Cr, 8% Ni. The chromium is added, as before, to give corrosion resistance. But nickel is added as well because it stabilises austenite. The Fe-Ni phase diagram (Fig. 12.8) shows why. Adding nickel lowers the temperature of the f.c.c.-b.c.c. transformation from 914°C for pure iron to 720°C for Fe-8% Ni. In addition, the Mn, Cr and Ni slow the diffusive f.c.c.-b.c.c. transformation down by orders of magnitude. 18/8 stainless steel can therefore be cooled in air from 800°C to room temperature without transforming to b.c.c. The austenite is, of course, unstable at room temperature. Flowever, diffusion is far too slow for the metastable austenite to transform to ferrite by a diffusive mechanism. It is, of course, possible for the austenite to transform displacively to give... [Pg.130]

Galvanic anodes of cast iron were already in use in 1824 for protecting the copper cladding on wooden ships (see Section 1.3). Even today iron anodes are still used for objects with a relatively positive protection potential, especially if only a small reduction in potential is desired, e.g., by the presence of limiting values U" (see Section 2.4). In such cases, anodes of pure iron (Armco iron) are mostly used. The most important data are shown in Table 6-1. [Pg.185]

In XPS, chemical information is comparatively slowly acquired in a stepwise fashion along with the depth, with alternate cycles of sputtering and analysis. Examples of profiles through oxide films on pure iron and on Fe-12Cr-lMo alloy are shown in Fig. 2.9, in which the respective contributions from the metallic and oxide components of the iron and chromium spectra have been quantified [2.10]. In these examples the oxide films were only -5 nm thick on iron and -3 nm thick on the alloy. [Pg.19]

Fig. 2.9. Depth profiles ofthin (3-5-nm) oxide films [2.10] on (A) pure iron, (B) Fe-12Cr-l Mo alloy. Fig. 2.9. Depth profiles ofthin (3-5-nm) oxide films [2.10] on (A) pure iron, (B) Fe-12Cr-l Mo alloy.
Pure iron, when needed, is produced on a relatively small scale by the reduction of the pure oxide or hydroxide with hydrogen, or by the carbonyl process in which iron is heated with carbon monoxide under pressure and the Fe(CO)5 so formed decomposed at 250°C to give the powdered metal. However, it is not in the pure state but in the form of an enormous variety of steels that iron finds its most widespread uses, the world s annual production being over 700 million tonnes. [Pg.1071]

Thus the diagram shows the solid phases of iron, the activities of metal ions and the pressures of hydrogen and oxygen gas that are at equilibrium at any given potential and pH when pure iron reacts with pure water. [Pg.67]

Janik-Czachor, M., Electrochemical and Microscopic Study of Pitting Corrosion of Ultra-pure Iron , Br. Corros. J., 6, 57 (1971)... [Pg.207]

Probably the most comprehensive measurements of the effect of voids on rates are those of Cohen "" and his school. They have published data on the oxidation of pure irons for a wide temperature range and for oxygen pressures ranging from 1-3 x 10 "N/m to lOOkN/m. The interactions between void formation and oxygen uptake are complex but only at pressures below 1 3 X 10 N/m do voids have no effect. Some of their results are summarised in Fig. 1.85 over the pressure range 1-3 x 10 N/m to... [Pg.275]

Notwithstanding the large amount of work on pure iron and binary alloys, it remains difficult to translate the results to commercially useful steels. It is believed, on the one hand, that effusion of carbon monoxide can cause non-healing Assures in the scale , and on the other, that silicon creates self-healing layers at the metal interface . ... [Pg.277]

Fig. 7.3 Simplified scheme for the diffusion-controlled growth of multilayered scales on pure iron and mild steel above 570° C... Fig. 7.3 Simplified scheme for the diffusion-controlled growth of multilayered scales on pure iron and mild steel above 570° C...
For many low alloy steels, therefore, the scale phase sequence is as shown in Fig. 7.5 and the governing equations for individual layer growth are similar to those for pure iron, with the addition of ... [Pg.973]

In recent work phase stability diagrams were used to evaluate the effect of molten Na2S04 on the kinetics of corrosion of pure iron between 600° C and 800° C by drawing a series of superimposed stability diagrams for Na-O-S and Fe-O-S at 600°C, 700° C and 800°C and thus to account for the differences in the corrosion behaviour as a function of temperature. [Pg.1122]

The above data relate to very pure iron samples with low dislocation densities. In real steels the trapping effects result in much lower apparent diffusivities, which are dependent on the metallurgical state of the steel, as well as its chemical composition. Typical values for the apparent diffusion coefficient of hydrogen in high-strength alloy steel at room temperature are in the region of 10" mVs. [Pg.1234]


See other pages where Pure iron is mentioned: [Pg.368]    [Pg.368]    [Pg.169]    [Pg.178]    [Pg.385]    [Pg.47]    [Pg.77]    [Pg.80]    [Pg.85]    [Pg.124]    [Pg.125]    [Pg.363]    [Pg.9]    [Pg.282]    [Pg.48]    [Pg.1075]    [Pg.102]    [Pg.163]    [Pg.179]    [Pg.271]    [Pg.1022]    [Pg.1178]    [Pg.1231]    [Pg.1234]   
See also in sourсe #XX -- [ Pg.64 ]




SEARCH



© 2024 chempedia.info