Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Interface spectrometry

Dynamic Fast-Atom Bombardment and Liquid-Phase Secondary Ion Mass Spectrometry (FAB/LSIMS) Interface... [Pg.81]

The basic principles of fast-atom bombardment (FAB) and liquid-phase secondary ion mass spectrometry (LSIMS) are discussed only briefly here because a fuller description appears in Chapter 4. This chapter focuses on the use of FAB/LSIMS as part of an interface between a liquid chromatograph (LC) and a mass spectrometer (MS), although some theory is presented. [Pg.81]

Aerosols can be produced as a spray of droplets by various means. A good example of a nebulizer is the common household hair spray, which produces fine droplets of a solution of hair lacquer by using a gas to blow the lacquer solution through a fine nozzle so that it emerges as a spray of small droplets. In use, the droplets strike the hair and settle, and the solvent evaporates to leave behind the nonvolatile lacquer. For mass spectrometry, a spray of a solution of analyte can be produced similarly or by a wide variety of other methods, many of which are discussed here. Chapters 8 ( Electrospray Ionization ) and 11 ( Thermospray and Plasmaspray Interfaces ) also contain details of droplet evaporation and formation of ions that are relevant to the discussion in this chapter. Aerosols are also produced by laser ablation for more information on this topic, see Chapters 17 and 18. [Pg.138]

Multidimensional or hyphenated instmments employ two or more analytical instmmental techniques, either sequentially, or in parallel. Hence, one can have multidimensional separations, eg, hplc/gc, identifications, ms/ms, or separations/identifications, such as gc/ms (see CHROMATOGRAPHY Mass spectrometry). The purpose of interfacing two or more analytical instmments is to increase the analytical information while reducing data acquisition time. For example, in tandem-mass spectrometry (ms/ms) (17,18), the first mass spectrometer appHes soft ionization to separate the mixture of choice into molecular ions the second mass spectrometer obtains the mass spectmm of each ion. [Pg.394]

The possibiHties for multidimensional iastmmental techniques are endless, and many other candidate components for iaclusion as hyphenated methods are expected to surface as the technology of interfacing is resolved. In addition, ternary systems, such as gas chromatography-mass spectrometry-iafrared spectrometry (gc/ms/ir), are also commercially available. [Pg.395]

The use of separation techniques, such as gel permeation and high pressure Hquid chromatography interfaced with sensitive, silicon-specific aas or ICP detectors, has been particularly advantageous for the analysis of siUcones in environmental extracts (469,483—486). Supercritical fluid chromatography coupled with various detection devices is effective for the separation of siUcone oligomers that have molecular weights less than 3000 Da. Time-of-flight secondary ion mass spectrometry (TOF-sims) is appHcable up to 10,000 Da (487). [Pg.60]

This assumes that the gas-solid exchange kinetics at the interface is rapid. When this process affects the exchange kinetics significantly dieii analysis of concentrations layer by layer in die diffused sample is necessaty. This can be done by the use of SIMS (secondary ion mass spectrometry) and the equation used by Kihier, Steele and co-workers for this diffusion study employs a surface exchange component. [Pg.231]

Sputtered Neutral Mass Spectrometry (SNMS) is the mass spectrometric analysis of sputtered atoms ejected from a solid surface by energetic ion bombardment. The sputtered atoms are ionized for mass spectrometric analysis by a mechanism separate from the sputtering atomization. As such, SNMS is complementary to Secondary Ion Mass Spectrometry (SIMS), which is the mass spectrometric analysis of sputtered ions, as distinct from sputtered atoms. The forte of SNMS analysis, compared to SIMS, is the accurate measurement of concentration depth profiles through chemically complex thin-film structures, including interfaces, with excellent depth resolution and to trace concentration levels. Genetically both SALI and GDMS are specific examples of SNMS. In this article we concentrate on post ionization only by electron impact. [Pg.43]

The analytical techniques covered in this chapter are typically used to measure trace-level elemental or molecular contaminants or dopants on surfaces, in thin films or bulk materials, or at interfaces. Several are also capable of providing quantitative measurements of major and minor components, though other analytical techniques, such as XRF, RBS, and EPMA, are more commonly used because of their better accuracy and reproducibility. Eight of the analytical techniques covered in this chapter use mass spectrometry to detect the trace-level components, while the ninth uses optical emission. All the techniques are destructive, involving the removal of some material from the sample, but many different methods are employed to remove material and introduce it into the analyzer. [Pg.527]

Surface analysis has made enormous contributions to the field of adhesion science. It enabled investigators to probe fundamental aspects of adhesion such as the composition of anodic oxides on metals, the surface composition of polymers that have been pretreated by etching, the nature of reactions occurring at the interface between a primer and a substrate or between a primer and an adhesive, and the orientation of molecules adsorbed onto substrates. Surface analysis has also enabled adhesion scientists to determine the mechanisms responsible for failure of adhesive bonds, especially after exposure to aggressive environments. The objective of this chapter is to review the principals of surface analysis techniques including attenuated total reflection (ATR) and reflection-absorption (RAIR) infrared spectroscopy. X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), and secondary ion mass spectrometry (SIMS) and to present examples of the application of each technique to important problems in adhesion science. [Pg.243]

M. Car eri, A. Mangia and M. Musci, Overview of the applications of liquid cliromatog-raphy-mass spectrometry interfacing systems in food analysis naturally occurring substances in food , 7. Chromatogr. 794 263-297 (1998). [Pg.134]

Gas chromatography/mass spectrometry (GC/MS) is the synergistic combination of two powerful analytic techniques. The gas chromatograph separates the components of a mixture in time, and the mass spectrometer provides information that aids in the structural identification of each component. The gas chromatograph, the mass spectrometer, and the interface linking these two instruments are described in this chapter. [Pg.199]

The ion spray liquid chromatography/mass spectrometry (LC-MS) interface coupled via a postsuppressor split with an ion chromatography (IC) has been used in the analysis of alcohol sulfates. The IC-MS readily produces the molecular weight while the tandem mass spectrometric detection IC-MS-MS provides structural information [305]. [Pg.285]

To understand the need to interface liquid chromatography and mass spectrometry. [Pg.19]

To understand the requirements of an interface between liquid chromatography and mass spectrometry and the performance of the combined system. [Pg.19]

The combination of chromatography and mass spectrometry (MS) is a subject that has attracted much interest over the last forty years or so. The combination of gas chromatography (GC) with mass spectrometry (GC-MS) was first reported in 1958 and made available commercially in 1967. Since then, it has become increasingly utilized and is probably the most widely used hyphenated or tandem technique, as such combinations are often known. The acceptance of GC-MS as a routine technique has in no small part been due to the fact that interfaces have been available for both packed and capillary columns which allow the vast majority of compounds amenable to separation by gas chromatography to be transferred efficiently to the mass spectrometer. Compounds amenable to analysis by GC need to be both volatile, at the temperatures used to achieve separation, and thermally stable, i.e. the same requirements needed to produce mass spectra from an analyte using either electron (El) or chemical ionization (Cl) (see Chapter 3). In simple terms, therefore, virtually all compounds that pass through a GC column can be ionized and the full analytical capabilities of the mass spectrometer utilized. [Pg.19]

The characteristics of an ideal liquid chromatography-mass spectrometry interface have been discussed, with emphasis having been placed upon the major incompatibilities of the two component techniques that need to be overcome to allow the combination to function effectively. [Pg.23]

To understand the principles of operation of each of these interfaces, in particular with regard to the way in which they achieve compatibility between high performance liquid chromatography and mass spectrometry. [Pg.133]

Reference has been made to the problems associated with the presence of highly involatile analytes. Many buffers used in HPLC are inorganic and thus involatile and these tend to compromise the use of the interface, in particular with respect to snagging of the belt in the tunnel seals. The problem of inorganic buffers is not one confined to the moving-belt interface and, unless post-column extraction is to be used, those developing HPLC methods for use with mass spectrometry are advised to utilize relatively volatile buffers, such as ammonium acetate, if at all possible. [Pg.139]

Figure 4.3 Schematic of a continuous-flow FAB LC-MS interface. From applications literature published by Kratos Analytical Ltd, Manchester, UK, and reproduced by permission of Mass Spectrometry International Ltd. Figure 4.3 Schematic of a continuous-flow FAB LC-MS interface. From applications literature published by Kratos Analytical Ltd, Manchester, UK, and reproduced by permission of Mass Spectrometry International Ltd.

See other pages where Interface spectrometry is mentioned: [Pg.586]    [Pg.77]    [Pg.484]    [Pg.951]    [Pg.1]    [Pg.201]    [Pg.204]    [Pg.541]    [Pg.548]    [Pg.402]    [Pg.404]    [Pg.418]    [Pg.529]    [Pg.530]    [Pg.316]    [Pg.415]    [Pg.436]    [Pg.553]    [Pg.230]    [Pg.238]    [Pg.422]    [Pg.139]    [Pg.141]    [Pg.265]    [Pg.244]    [Pg.18]    [Pg.103]   
See also in sourсe #XX -- [ Pg.59 , Pg.109 , Pg.110 ]




SEARCH



Electrospray interface, mass spectrometry

Gas chromatography-mass spectrometry interface

Gas chromatography-mass spectrometry interfacing

HPLC interfaced with mass spectrometry

Interface HPLC with mass spectrometry

Interface liquid chromatography-mass spectrometry

Interface resonance-mass spectrometry

Interfaces Between Microfluidics and Mass Spectrometry

Interfaces for Coupling Capillary Electrophoresis with Mass Spectrometry

Interfaces for Coupling Liquid Chromatography with Mass Spectrometry

Interfaces, chromatography-mass spectrometry

Interfacing HPLC to Mass Spectrometry

Isotope ratio mass spectrometry combustion interface

Mass spectrometry interface structure

Mass spectrometry interface with other techniques

Mass spectrometry interfaces

Mass spectrometry interfacing

Mass spectrometry interfacing with HPLC

Moving-belt interface mass spectrometry

Reaction interfaces, mass spectrometry

Tools of the Trade IV. Interfaces and Ion Sources for Chromatography-Mass Spectrometry

© 2024 chempedia.info