Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Interface permeability

For microporous membranes, the partial pressure profiles, in the case of gas (vapor) systems, and concentration profiles are continuous from the bulk feed to the bulk permeate, as illustrated in Figure 10.10a. Resistance to mass transfer by films adjacent to the upstream and downstream membrane interfaces create partial pressure and concentration differences between the bulk concentration and the concentration adjacent to the membrane interface. Permeability for microporous membranes is high but selectivity is low for small molecules. [Pg.193]

If it were possible to have an interface permeable to only one ion, then the transport number of that ion would be unity and... [Pg.34]

In membrane transport, one-dimensional models are usually used. If the permeates move independently of one another and with the ideal interface permeability, the simple diffusion, described by Fick s law, across the membrane is given by the boundary value problem... [Pg.486]

Membranes made by interfacial polymerization have a dense, highly cross-linked interfacial polymer layer formed on the surface of the support membrane at the interface of the two solutions. A less cross-linked, more permeable hydrogel layer forms under this surface layer and fills the pores of the support membrane. Because the dense cross-linked polymer layer can only form at the interface, it is extremely thin, on the order of 0.1 p.m or less, and the permeation flux is high. Because the polymer is highly cross-linked, its selectivity is also high. The first reverse osmosis membranes made this way were 5—10 times less salt-permeable than the best membranes with comparable water fluxes made by other techniques. [Pg.68]

Fig. 8 shows a primer formulated with a corrosion-inhibiting pigment such as a chromate. As discussed previously, some permeability to moisture is necessary for these pigments to dissolve and be transported to the interface where passivation of the substrate can occur. Optimum performance is generally found at PVC/CPVC Just below 1 [71]. [Pg.457]

PDMS based siloxane polymers wet and spread easily on most surfaces as their surface tensions are less than the critical surface tensions of most substrates. This thermodynamically driven property ensures that surface irregularities and pores are filled with adhesive, giving an interfacial phase that is continuous and without voids. The gas permeability of the silicone will allow any gases trapped at the interface to be displaced. Thus, maximum van der Waals and London dispersion intermolecular interactions are obtained at the silicone-substrate interface. It must be noted that suitable liquids reaching the adhesive-substrate interface would immediately interfere with these intermolecular interactions and displace the adhesive from the surface. For example, a study that involved curing a one-part alkoxy terminated silicone adhesive against a wafer of alumina, has shown that water will theoretically displace the cured silicone from the surface of the wafer if physisorption was the sole interaction between the surfaces [38]. Moreover, all these low energy bonds would be thermally sensitive and reversible. [Pg.689]

Then if any two phases are separately in equilibrium with a third phase, they are also in equilibrium when placed in contact, so that if any one phase (e.y., the vapour) is taken as a test-phase, and the other phases are separately in equilibrium with this, the whole system will be in equilibrium. Under the conditions imposed, it is sufficient that the vapour pressure, or osmotic pressure, of each component has the same value at all the interfaces, for we may consider each component separately by intruding across the interface a diaphragm permeable to that compo- -nent alone. Then if the vapour, or osmotic pressures, are not equal at the third interface to their values at the first and second interfaces, i.e., at the interfaces on the test-phase, we could carry out a reversible isothermal cycle in which any quantity of a specified component is taken from the test-phase to the phase of higher pressure, then across the interface to the phase of lower pressure, and then back to the test-phase. In this cycle, work would be obtained, which however is impossible. Hence the two phases which are separately in equilibrium with the test-phase are also in equilibrium with each other. This may be called the Law of the Mutual Compatibility of Phases (cf. 106). [Pg.388]

Theoretical aspects of mediation and electrocatalysis by polymer-coated electrodes have most recently been reviewed by Lyons.12 In order for electrochemistry of the solution species (substrate) to occur, it must either diffuse through the polymer film to the underlying electrode, or there must be some mechanism for electron transport across the film (Fig. 20). Depending on the relative rates of these processes, the mediated reaction can occur at the polymer/electrode interface (a), at the poly-mer/solution interface (b), or in a zone within the polymer film (c). The equations governing the reaction depend on its location,12 which is therefore an important issue. Studies of mediation also provide information on the rate and mechanism of electron transport in the film, and on its permeability. [Pg.586]

The liquid-liquid patition systems discussed above are in fact very similar to various membrane-type interfaces and may serve as a model for them.A good example is, for instance, the distribution of a dissociated salt between an aqueous solution and a permeable organic polmer. ... [Pg.35]

A special case of interfaces between electrolytes are those involving membranes. A membrane is a thin, ion-conducting interlayer (most often solid but sometimes also a solution in an immiscible electrolyte) separating two similar liquid phases and exhibiting selectivity (Fig. 5.1). Nonselective interlayers, interlayers uniformly permeable for all components, are called diaphragms. Completely selective membranes (i.e., membranes that are permeable for some and impermeable for other substances) are called permselective membranes. [Pg.71]

An ion-selective electrode contains a semipermeable membrane in contact with a reference solution on one side and a sample solution on the other side. The membrane will be permeable to either cations or anions and the transport of counter ions will be restricted by the membrane, and thus a separation of charge occurs at the interface. This is the Donnan potential (Fig. 5 a) and contains the analytically useful information. A concentration gradient will promote diffusion of ions within the membrane. If the ionic mobilities vary greatly, a charge separation occurs (Fig. 5 b) giving rise to what is called a diffusion potential. [Pg.57]

Key mechanisms important for improved oil mobilization by microbial formulations have been identified, including wettability alteration, emulsification, oil solubilization, alteration in interfacial forces, lowering of mobility ratio, and permeability modification. Aggregation of the bacteria at the oil-water-rock interface may produce localized high concentrations of metabolic chemical products that result in oil mobilization. A decrease in relative permeability to water and an increase in relative permeability to oil was usually observed in microbial-flooded cores, causing an apparent curve shift toward a more water-wet condition. Cores preflushed with sodium bicarbonate showed increased oil-recovery efficiency [355]. [Pg.221]

The situation that no charge transfer across the interface occurs is named the ideal polarized or blocked interface. Such interfaces do not permit, due to thermodynamic or kinetic reasons, either electron or ion transfer. They possess Galvani potentials fixed by the electrolyte and charge. Of course, the ideal polarizable interface is practically a limiting case of the interfaces with charge transfer, because any interface is always permeable to ions to some extent. Therefore, only an approximation of the ideal polarizable interface can be realized experimentally (Section III.D). [Pg.20]

Increases in permeability caused by limestone dissolution approximately doubled the injection index (the amount of waste that can be injected at a specified pressure). As of 1974, the effects of the pressure created by the injection were calculated to extend more than 40 miles radially from the injection site.167 An updip movement of the freshwater/saltwater interface in the injection-zone aquifer, which lies less than 32 km (20 miles) from the injection wells, was also observed. [Pg.838]

Another point of importance about the film structure is the degree to which it can be permeated by various ions and molecules. It is of course essential that supporting electrolyte ions be able to penetrate the film, else the electrical double layer at the electrode/polymer interface could not be charged to potentials that drive electron transfers between the polymer and the electrode. The electroneutrality requirements of porphyrin sites as their electrical charges are changed by oxidation or reduction also could not be satisfied without electrolyte permeation. With the possible exception of the phenolic structure in Fig. 1, this level of permeability seems to be met by the ECP porphyrins. [Pg.412]

In this section we want to discuss unsteady diffusion across a permeable membrane. In other words, we are interested in how concentration and flux change before reaching the steady state discussed in Section IV.B. The membrane is initially free of solute. At time zero, the concentrations on both sides of the membrane are increased, to C and c2. Equilibrium between the solution and the membrane interface is assumed therefore, the corresponding concentrations on the membrane surfaces are Kc, and Kc2. Fick s second law is still applicable ... [Pg.58]

Figure 36 shows that efflux of PNU-78,517 from the apical membrane is facilitated by BSA. Its permeability coefficients increase with BS A concentration the magnitudes of the values (10 6—10 5 cm/min) and trends indicate that the desorption kinetics are membrane-controlled and that BSA acts as a drug acceptor at the membrane interface via protein binding. The initial mass fraction readily... [Pg.322]


See other pages where Interface permeability is mentioned: [Pg.323]    [Pg.41]    [Pg.100]    [Pg.698]    [Pg.386]    [Pg.430]    [Pg.427]    [Pg.313]    [Pg.780]    [Pg.1251]    [Pg.1252]    [Pg.38]    [Pg.852]    [Pg.931]    [Pg.2]    [Pg.83]    [Pg.186]    [Pg.168]    [Pg.13]    [Pg.302]    [Pg.8]    [Pg.160]    [Pg.322]    [Pg.323]    [Pg.712]    [Pg.818]    [Pg.437]    [Pg.360]    [Pg.438]    [Pg.208]    [Pg.697]    [Pg.1112]    [Pg.193]   
See also in sourсe #XX -- [ Pg.208 , Pg.209 , Pg.212 , Pg.213 ]




SEARCH



© 2024 chempedia.info