Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Inhibitors volatilization

Vapor phase inhibitors/volatile corrosion inhibitors (VCI)... [Pg.581]

The question as to whether a flame retardant operates mainly by a condensed-phase mechanism or mainly by a vapor-phase mechanism is especially comphcated in the case of the haloalkyl phosphoms esters. A number of these compounds can volatilize undecomposed or undergo some thermal degradation to release volatile halogenated hydrocarbons (37). The intact compounds or these halogenated hydrocarbons are plausible flame inhibitors. At the same time, thek phosphoms content may remain at least in part as relatively nonvolatile phosphoms acids which are plausible condensed-phase flame retardants (38). There is no evidence for the occasionally postulated formation of phosphoms haUdes. Some evidence has been presented that the endothermic vaporization and heat capacity of the intact chloroalkyl phosphates may be a main part of thek action (39,40). [Pg.475]

Alkylated aromatics have excellent low temperature fluidity and low pour points. The viscosity indexes are lower than most mineral oils. These materials are less volatile than comparably viscous mineral oils, and more stable to high temperatures, hydrolysis, and nuclear radiation. Oxidation stabihty depends strongly on the stmcture of the alkyl groups (10). However it is difficult to incorporate inhibitors and the lubrication properties of specific stmctures maybe poor. The alkylated aromatics also are compatible with mineral oils and systems designed for mineral oils (see Benzene Toulene Xylenes and ethylbenzene). ... [Pg.264]

Other hydrocarbons. They have been used as corrosion inhibitors in glycol heat-exchanger fluids (antifree2es) and as volatile corrosion inhibitors for steel (see Corrosion and corrosion inhibitors). They also stabilize sulfur trioxide. [Pg.245]

Polymerization-grade chloroprene is typically at least 99.5% pure, excluding inert solvents that may be present. It must be substantially free of peroxides, polymer [9010-98-4], and inhibitors. A low, controlled concentration of inhibitor is sometimes specified. It must also be free of impurities that are acidic or that will generate additional acidity during emulsion polymerization. Typical impurities are 1-chlorobutadiene [627-22-5] and traces of chlorobutenes (from dehydrochlorination of dichlorobutanes produced from butenes in butadiene [106-99-0]), 3,4-dichlorobutene [760-23-6], and dimers of both chloroprene and butadiene. Gas chromatography is used for analysis of volatile impurities. Dissolved polymer can be detected by turbidity after precipitation with alcohol or determined gravimetrically. Inhibitors and dimers can interfere with quantitative determination of polymer either by precipitation or evaporation if significant amounts are present. [Pg.39]

Vapor-phase inhibitors are volatile compounds that adsorb onto metal surfaces, and retard or prevent corrosion by a variety of mechanisms (37). Inhibitors such as dicyclohexamine nitrate [3882-06-02] can protect a variety of metals such as steel, aluminum, and tinplate. A number of vapor-phase inhibitors are commercially available as powders or tablets. However, vapor-phase inhibitors attack nonferrous metals to varying degrees, thus the manufacturers recommendations should be checked before appHcation. The system to be protected must be closed to maintain the volatile compound, but objects as large as the interior of an ocean-going tanker have been treated by this technique. [Pg.283]

Boilers and steam systems Steel steam lines can be inhibited by the use of a volatile amine-based inhibitor such as ammonia, morpholine or cyclohexylamine introduced with the feedwater. It passes through the boiler and into the steam system, where it neutralizes the acidic conditions in pipework. The inhibitor is chemically consumed and lost by physical means. Film-forming inhibitors such as heterocyclic amines and alkyl sulphonates must be present at levels sufficient to cover the entire steel surface, otherwise localized corrosion will occur on the bare steel. Inhibitor selection must take into account the presence of other materials in the system. Some amine products cause corrosion of copper. If copper is present and at risk of corrosion it can be inhibited by the addition of benzotriazole or tolutriazole at a level appropriate to the system (see also Section 53.3.2). [Pg.910]

Vapor phase inhibitors These are used for the temporary protection of new plant in transit or prior to commissioning. Volatile corrosion inhibitors such as cyclohexylamine derivatives are used. The plant must be sealed or contained to prevent rapid loss of the inhibitor. Sachets of these materials are placed in packing cases. Papers impregnated with them are available for wrapping steel items. These inhibitors are used primarily to protect steel. [Pg.910]

The atmospheric pollution prevailing in special industrial or laboratory locations may induce more severe corrosion, e.g. the vapours from concentrated hydrochloric or acetic acid will etch tin, and moist sulphur dioxide will produce a sulphide tarnish, as will hydrogen sulphide at temperatures above about 100°C. The halogens attack tin readily. The commonly used volatile corrosion inhibitors are without adverse action although the benefit derived from their use is doubtful. [Pg.804]

Sometimes it is possible to add corrosion inhibitors to an aqueous product that is to remain in contact with tinned steel. The normal inhibitors used for protecting steel, e.g. benzoate, nitrite, chromate, etc. are suitable, provided that they are compatible with the product and that the pH is not raised above 10. In a closed container with an air-space, such inhibitors will not protect the zone above the water-line, and possibly not the water-line zone itself, against condensate. Volatile inhibitors have been used to give protection to these areas. [Pg.503]

There are many temporary protectives on the market and it would be impracticable to describe them individually. However, they may be classified according to the type of film formed, i.e. soft film, hard film and oil film the soft film may be further sub-divided into solvent-deposited thin film, hot-dip thick film, smearing and slushing types. All these types are removable with common petroleum solvents. There are also strippable types based on plastics (deposited by hot dipping or from solvents) or rubber latex (deposited from emulsions) these do not adhere to the metal surfaces and are removed by peeling. In addition there are volatile corrosion inhibitors (V.C.I.) consisting of substances, the vapour from which inhibits corrosion of ferrous metals. [Pg.756]

Volatile corrosion inhibitors are particularly useful when oil, grease or other adherent films are unsuitable. They should be used in conjunction with a primary wrap which should form as close an approach to a hermetically-sealed pack as possible. They are widely used to provide protection to precision tools, moulds and dies, and also on a larger scale to car body components. [Pg.763]

Atmospheric corrosion can be prevented by using volatile inhibitors which need not be applied directly to the surfaces to be protected. Most such inhibitors are amine nitrites, benzoates, chromates, etc. They are mainly used with ferrous metals. There is still some disagreement as to the mechanism of action. Clearly, any moisture that condenses must be converted to an inhibitive solution. There is no doubt that the widely used volatile inhibitors are effective in aqueous solutions containing moderate... [Pg.772]

Both these materials are available commercially as powders and in impregnated wrapping papers and bags. Various modified inhibitors are also available, containing mixtures of the two, or more alkaline materials such as guanidine carbonate. Other proprietary inhibitors contain volatile amines, e.g. morpholine, combined with solution inhibitors. Certain solution inhibitors have been reported to act to some extent as volatile inhibitors. [Pg.773]

The testing of vapour phase inhibitors, usually referred to as volatile corrosion inhibitors, is essentially a matter of placing a test specimen in the vapour space of a closed vessel containing an aggressive atmosphere — frequently water vapour, perhaps with SO2 present—and a quantity of the inhibitor. Variations on the basic technique include provision for circulation of the vapour, the use of paper impregnated with inhibitor, provision for temperature cycling, etc. [Pg.1085]

Gas mixing patterns Volatile products Growth inhibitors... [Pg.71]

Volatile Inhibitors. Of the volatile components that influence plant growth and development, ethylene has received the most attention. Literature concerned with the variety of effects produced by ethylene, factors which influence its production, and the mechanisms through which responses are expressed has been reviewed by Evenari (57). Other gaseous excretions with inhibitory effects considered by Evenari include hydrogen cyanide, ammonia, essential oils, and mustard oils (probably allyl isothiocyanate and /3-phenethyI isothiocyanate). [Pg.121]

Nonvolatile Inhibitors. Glycosides A number of toxic constituents are known to be released by the enzymatic degradation of various glycosides. Some of the volatile components have been mentioned previously—i.e., isothiocyanates from mustard oil glycosides and hydrogen cyanide from cyanogenic glycosides. [Pg.123]

All-volatile programs (AVPs) These programs are employed in higher pressure boilers (generally power boilers) and utilize only volatile chemicals, such as ammonia, amines (such as diethylhy-droxylamine or DEHA), and other vapor phase inhibitors (VPIs). [Pg.389]

As MTHW and HTHW system temperatures and pressures rise, so the need to provide softened or deionized FW becomes increasingly necessary, although there is not always a clear cut-off point. Where these systems are supplied with higher quality water, traditional, inorganic anodic inhibitor chemistries tend to be replaced by all-polymer, all-organic, or all-volatile chemistries to keep measurable TDS to a... [Pg.394]

A further longer term wet lay-up alternative is through the use of volatile corrosion inhibitors (VCIs) such as dicyclohexylamine acetate. These are dissolved in the water at a temperature below 60 °C, and the water is circulated for 4 to 5 hours. The boiler does not need to be completely filled because the VCI migrates to all parts of the boiler and reaches equilibrium in each of the void spaces. With traditional lay-up chemicals, the oxygen scavenger may become depleted easily (which is why the reserve usually is so high) and corrosion protection is quickly lost however, with VCI programs, there is always a volatile buffer available that maintains equilibrium and hence corrosion protection. [Pg.609]

Gandhi, Ashish (Cortec Corporation). Volatile Corrosion Inhibitors Unique Water Treatment Applications. The Analyst, Journal of the Association of Water Technologies, USA, Fall 2000. [Pg.765]


See other pages where Inhibitors volatilization is mentioned: [Pg.122]    [Pg.457]    [Pg.88]    [Pg.503]    [Pg.119]    [Pg.482]    [Pg.499]    [Pg.335]    [Pg.1125]    [Pg.440]    [Pg.31]    [Pg.898]    [Pg.338]    [Pg.758]    [Pg.769]    [Pg.772]    [Pg.773]    [Pg.773]    [Pg.774]    [Pg.774]    [Pg.857]    [Pg.1382]    [Pg.1458]    [Pg.138]    [Pg.760]    [Pg.970]   


SEARCH



© 2024 chempedia.info