Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Condensed-phase Mechanisms

Alkyl diphenyl phosphate plasticizers can exert flame-retardant action in vinyl plastics by a condensed-phase mechanism, which is probably some sort of phosphoms acid coating on the char. Triaryl phosphates appear to have a vapor-phase action (29). [Pg.475]

The question as to whether a flame retardant operates mainly by a condensed-phase mechanism or mainly by a vapor-phase mechanism is especially comphcated in the case of the haloalkyl phosphoms esters. A number of these compounds can volatilize undecomposed or undergo some thermal degradation to release volatile halogenated hydrocarbons (37). The intact compounds or these halogenated hydrocarbons are plausible flame inhibitors. At the same time, thek phosphoms content may remain at least in part as relatively nonvolatile phosphoms acids which are plausible condensed-phase flame retardants (38). There is no evidence for the occasionally postulated formation of phosphoms haUdes. Some evidence has been presented that the endothermic vaporization and heat capacity of the intact chloroalkyl phosphates may be a main part of thek action (39,40). [Pg.475]

It is our intention to point out clues, mostly from the literature, some from our own work, which suggest approaches to new flame retardant systems with greatly increased efficiency. Both vapor phase and condensed phase mechanisms will be considered. [Pg.97]

Condensed-Phase Mechanisms. The mode of action of phosphorus-based flame retardants in cellulnsic sy stems is probably best understood. Cellulose decomposes by a noncalalyzed route lo tarry depolymerization products, notably levoglucosan, which then decomposes to volatile combustible fragments such as alcohols, aldehydes, ketones, and hydrocarbons. However, when catalyzed by acids, the decomposition of cellulose proceeds primarily as an endothermic dehydration of the carbohydrate to water vapor and char. Phosphoric acid is particularly efficaceous in this catalytic role because of its low volatility (see Phosphoric Acids and Phosphales). Also, when strongly heated, phosphoric acid yields polyphosphoric acid which is even more effective in catalyzing the cellulose dehydration reaction. The flame-retardanl action is believed to proceed by way of initial phosphory lation of the cellulose. [Pg.640]

The literature contains numerous speculations as to the mechanism. Some involve a condensed phase mechanism, as, for example, in the case of cellulose in which it is suggested the formation in situ of antimony chloride which may react with cellulose to alter the course of thermal decomposition and/or form a heavy vapor tending to extinguish the flame. 28 Some involve a physical gas-phase mechanism such as formation in the flame of nonvolatile, antimony-containing solid or... [Pg.79]

The oxygen index increase was suggested to be due to a condensed phase mechanism and explained by taking into account the mechanism of thermal degradation of chloroparaffin and the interaction with the polymers. [Pg.83]

The condensed phase mechanism was explained taking into account the decrease of the pyrolysis rate of polypropylene BiCl3 could catalyze the condensation between chloroparaffin and polypropylene by addition to chain end double bonds (Equation 4.25) formed either in reaction (Equation 4.22) or in chain scission occurring during volatilization of polypropylene 31... [Pg.87]

Mechanistic studies described above show that halogenated fire-retardant systems can act by a condensed phase mechanism that in some cases could be induced by a halogen-free compound. [Pg.94]

It has been reported that the effectiveness of copolymerized DOPO-type monomers can be further improved if the alcohol-amine derivatives of DOPO, for example, Structure 5.11, are used rather than similar structures not containing nitrogen.30 Of the FR fibers based on P-containing comonomers, it has been found that those based on Structure 5.10 are more hydrolytically stable, presumably because the P-containing group is in a cyclic structure and also should the hydrolysis of the P-0 bond occur, it will not lead automatically to a marked reduction in molecular weight.31 All the P-modified PETs appear to be subject to both the vapor-and condensed-phase mechanisms of flame retardance, with the former predominating.32 33... [Pg.114]

Formation of a protective char layer is another important condensed-phase mechanism. Unfortunately, polystyrene does not form any appreciable levels of char during burning, even in the presence of charring catalysts. Some progress has been made in enhancing char formation of polystyrene by the use of Friedel-Crafts chemistry [18]. [Pg.692]

Condensed phase. In condensed-phase modification, the flame retardant alters the decomposition chemistry so that the transformation of the polymer to a char residue is favored. This result could be achieved with additives that catalyze char rather than flammable product formation or by designing polymer structures that favor char formation. Carbonization, which occurs at the cost of flammable product formation, also shields the residual substrate by interfering with the access of heat and oxygen. Phosphorus-based additives are typical examples of flame retardants that could act by a condensed phase mechanism. [Pg.308]

Prins et al. (21) described the lower flammability of poly-bromostyrene relative to that of polystyrene. On the basis of thermal analysis experiments, they suggested that bromine inhibited most of the oxidative chain reactions, and thus the combustion was not supported (vapor-phase mechanism). Khanna and Pearce (16) and Brauman (22) demonstrated that polystyrene could be flame retarded by appropriately modifying its structure with substituents that promote the char yield of the system (condensed-phased mechanism). [Pg.316]

As in polyester resins, reactive halogens containing fire-retardant chemicals are most often used in epoxy materials. Tetrabromobisphenol A is perhaps the most widely used component for flame-retarding epoxy resins. Nara and Matsuyama (24) and Nara et al. (25) described the thermal degradation and flame retardance of tetrabrominated bisphenol A diglycidyl ether compared to the nonbrorainated structure. Their results indicate that bromine acts by vapor-phase as well as condensed-phase mechanisms of flame inhibition. [Pg.317]

Wool has been regarded as a relatively safe fiber from the flammability point of view. However, it could be flame retarded to a higher degree if required. Hendrix et al. (26) suggested a large improvement in fire resistance of wool by treatment with 15% H PO. Beck et al. (27) showed that weak acidic materials, such as boric acid and dihydrogen phosphate, are effective additives for flame retarding wool by the condensed-phase mechanism (increased char residue). [Pg.317]

The question of the flammability behavior of similar flame retarding structures when used as additives or as comonomers in PET is discussed. For the case of structures related to tetrabromo-bisphenol-A, there was little difference, but for those containing triphenylphosphine oxide related structures a switch from volatile phase to condensed phase mechanisms was possible. [Pg.401]

Crosslinking could be induced in polystyrene structures containing vinylbenzyl chloride as a comonomer which enhanced char formation. For the cardopol3nners, the phenolphthalein based polymers were shown to have increased char formation because of the rearrangement of the lactide group to a thermally stable ester crosslink. Although other cardopolymers showec improvements in flammability, the mechanisms were not explored. Vapor phase and condensed phase mechanisms were applicable for substituted phenolic resins but mechanisms for the latter were not elucidated. [Pg.402]

Thus, the condensed phase mechanism of fire retardant intumescent systems aims at reducing the rate of pyrolysis of the polymer below the threshold for self-sustained combustion. This limits the production of volatile moieties and hence reduces undesirable secondary effects of volatiles combustion such as visual obscuration, corrosion and toxicity, which are typical of the widely used halogen containing fire retardants. [Pg.297]

Condensed-phase mechanisms of action are more numerous than the gas-phase mechanisms. Charring, discussed briefly above, is the most conunon condensed-phase mode of action. Again, charring could be promoted either by chemical interaction of the flame retardant and the polymer or by physical retention of the polymer in the condensed phase. Charring could also be promoted by catalysis or oxidative dehydrogenation. [Pg.7]

If conditions are right, phosphorus-based molecules can voIatiHze and are oxidized, producing active radicals in the flame. On the other hand, phosphorus flame retardants tend to react with the polymer or to oxidize to phosphoric acid in the condensed phase. This favors mostly condensed-phase mechanisms. It is challenging to design a phosphorus-based flame retardant that will volatilize into the flame at relatively low temperatures but wiU not be lost dnring polymer processing. [Pg.13]

Upon heating, melamine-based salts dissociate, and re-formed melamine volatilizes in a manner similar to pure melamine. However, in the case of melamine salts, a larger portion of melamine undergoes progressive condensation than does pure melamine therefore, the condensed-phase contribution of the salts is larger. If the anion contains phosphorus, the phosphoric acid released will phos-phorylate many polymers and produce a flame retardant effect similar to that of other typical phosphorus-based additives (see above). Melamine condensates and phosphoric acid react further at temperatures above 600° C, where triazine rings are opened and cross-linked. A (PON) type of structure known as phosphorus oxynitride is formed. Phosphorus oxynitride is very thermally stable and in some polymers can contribute to condensed-phase mechanisms. ... [Pg.15]


See other pages where Condensed-phase Mechanisms is mentioned: [Pg.475]    [Pg.80]    [Pg.85]    [Pg.87]    [Pg.120]    [Pg.121]    [Pg.130]    [Pg.143]    [Pg.146]    [Pg.692]    [Pg.100]    [Pg.102]    [Pg.1885]    [Pg.145]    [Pg.391]    [Pg.36]    [Pg.113]    [Pg.364]    [Pg.97]    [Pg.424]    [Pg.102]    [Pg.269]    [Pg.211]    [Pg.11]    [Pg.133]   
See also in sourсe #XX -- [ Pg.424 ]




SEARCH



Composites Condensed phase mechanism

Condensation mechanism

Condensed phase fire-retarding mechanisms

Condensed phase mechanism, halogen

Condensed phases

Mechanisms in Condensed Phases

Phase condensation

© 2024 chempedia.info