Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Identification spectrometry

Interest in this method has decreased since advances made in gas chromatography using high-resolution capillary columns (see article 3.3.3.) now enable complete identification by individual chemical component with equipment less expensive than mass spectrometry. [Pg.51]

This is an analysis frequently conducted on oil lubricants. Generally, the additive is known and its concentration can be followed by direct comparison of the oil with additive and the base stock. For example, concentrations of a few ppm of dithiophosphates or phenols are obtained with an interferometer. However, additive oils today contain a large number of products their identification or their analysis by IR spectrometry most often requires preliminary separation, either by dialysis or by liquid phase chromatography. [Pg.62]

The discussion of Rutherford backscattering spectrometry starts with an overview of the experimental target chamber, proceeds to the particle kinematics that detennine mass identification and depth resolution, and then provides an example of the analysis of a silicide. [Pg.1829]

In contrast to IR and NMR spectroscopy, the principle of mass spectrometry (MS) is based on decomposition and reactions of organic molecules on theii way from the ion source to the detector. Consequently, structure-MS correlation is basically a matter of relating reactions to the signals in a mass spectrum. The chemical structure information contained in mass spectra is difficult to extract because of the complicated relationships between MS data and chemical structures. The aim of spectra evaluation can be either the identification of a compound or the interpretation of spectral data in order to elucidate the chemical structure [78-80],... [Pg.534]

Although GGMS is the most widely used ana lytical method that combines a chromatographic sep aration with the identification power of mass spectrometry it is not the only one Chemists have coupled mass spectrometers to most of the mstru ments that are used to separate mixtures Perhaps the ultimate is mass spectrometry/mass spectrome try (MS/MS) m which one mass spectrometer gener ates and separates the molecular ions of the components of a mixture and a second mass spec trometer examines their fragmentation patterns ... [Pg.573]

Plasma torches and thermal ionization sources break down the substances into atoms and ionized atoms. Both are used for measurement of accurate isotope ratios. In the breakdown process, all structural information is lost, other than an identification of elements present (e.g., as in inductively coupled mass spectrometry, ICP/MS). [Pg.285]

Adams, F., Gijbels, R., and Van Grieken, K., Inorganic Mass Spectrometry, Wiley Interscience, New York, 1988. Adams, R.R, Identification of Essential Oils by Ion Trap Mass Spectrometry, Academic Press, San Diego, CA 1989. [Pg.449]

Kinter, M. and Sherman, N.E., Protein Sequencing and Identification Using Tandem Mass Spectrometry, Wiley, Chichester, U.K., 2000. [Pg.450]

Mass spectral fragmentation patterns of alkyl and phenyl hydantoins have been investigated by means of labeling techniques (28—30), and similar studies have also been carried out for thiohydantoins (31,32). In all cases, breakdown of the hydantoin ring occurs by a-ftssion at C-4 with concomitant loss of carbon monoxide and an isocyanate molecule. In the case of aryl derivatives, the ease of formation of Ar—NCO is related to the electronic properties of the aryl ring substituents (33). Mass spectrometry has been used for identification of the phenylthiohydantoin derivatives formed from amino acids during peptide sequence determination by the Edman method (34). [Pg.250]

Applications. The most ubiquitous use of infrared spectrometry is chemical identification. It has long been an important tool for studying newly synthesi2ed compounds in the research lab, but industrial identification uses cover an even wider range. In many industries ir spectrometry is used to assay feedstocks (qv). In the flavors (see Flavors and spices), fragrances (see Perfumes), and cosmetics (qv) industries, it can be used not only for gross identification of feedstocks, but for determining specific sources. The spectra of essential oils (see Oils, essential), essences, and other natural products vary with the season and source. Adulteration and dilution can also be identified. [Pg.201]

Data on infrared curves for many nitroparaffins and their sodium salts have been reported (10,85—89). References 87, 90 and 91 give uv spectra. Accurate analysis and positive identification of the components of a mixture of several nitroparaffins can be obtained by mass spectrometry (qv) (92). [Pg.103]

Latexes of synthetic resins are identified by ir spectrometry. Selective extraction with organic solvents is used to obtain purified fractions of the polymers for spectrometric identification. Polymeric films can be identified by the multiple internal reflectance ir technique, if the film is smooth enough to permit intimate contact with the reflectance plate. TAPPI and ASTM procedures have not been written for these instmmental methods, because the interpretation of spectra is not amenable to standardization. [Pg.11]

Analytical Approaches. Different analytical techniques have been appHed to each fraction to determine its molecular composition. As the molecular weight increases, complexity increasingly shifts the level of analytical detail from quantification of most individual species in the naphtha to average molecular descriptions in the vacuum residuum. For the naphtha, classical techniques allow the isolation and identification of individual compounds by physical properties. Gas chromatographic (gc) resolution allows almost every compound having less than eight carbon atoms to be measured separately. The combination of gc with mass spectrometry (gc/ms) can be used for quantitation purposes when compounds are not well-resolved by gc. [Pg.167]

Gas Chromatography (gc). A principal advantage of gas chromatography has been the faciUty with which it can be combined with mass spectrometry for amino acid identification and confirmation of purity. The gc-mass spectrometry combination offers the advantage of obtaining stmctural information rather than the identification by retention time in hplc. [Pg.284]

Multidimensional or hyphenated instmments employ two or more analytical instmmental techniques, either sequentially, or in parallel. Hence, one can have multidimensional separations, eg, hplc/gc, identifications, ms/ms, or separations/identifications, such as gc/ms (see CHROMATOGRAPHY Mass spectrometry). The purpose of interfacing two or more analytical instmments is to increase the analytical information while reducing data acquisition time. For example, in tandem-mass spectrometry (ms/ms) (17,18), the first mass spectrometer appHes soft ionization to separate the mixture of choice into molecular ions the second mass spectrometer obtains the mass spectmm of each ion. [Pg.394]

Liquid Ghromatography/Mass Spectrometry. Increased use of Hquid chromatography/mass spectrometry (Ic/ms) for stmctural identification and trace analysis has become apparent. Thermospray Ic/ms has been used to identify by-products in phenyl isocyanate precolumn derivatization reactions (74). Five compounds resulting from the reaction of phenyUsocyanate and the reaction medium were identified two from a reaction between phenyl isocyanate and methanol, two from the reaction between phenyl isocyanate and water, and one from the polymerisation of phenyl isocyanate. There were also two reports of derivatisation to enhance either the response or stmctural information from thermospray Ic/ms for linoleic acid hpoxygenase metabohtes (75) and for cortisol (76). [Pg.246]

Other spectroscopic methods such as infrared (ir), and nuclear magnetic resonance (nmr), circular dichroism (cd), and mass spectrometry (ms) are invaluable tools for identification and stmcture elucidation. Nmr spectroscopy allows for geometric assignment of the carbon—carbon double bonds, as well as relative stereochemistry of ring substituents. These spectroscopic methods coupled with traditional chemical derivatization techniques provide the framework by which new carotenoids are identified and characterized (16,17). [Pg.97]

The mass spectrometer (ms) is a common adjunct to a chromatographic system (see Mass spectrometry). The combination of a gas chromatograph for component separation and a mass spectrometer (gc/ms) for detection and identification of the separated components is a powerful tool, particularly when the data are collected usiag an on-line data-handling system. QuaUtative information inherent ia the separation can be coupled with the identification of stmcture and relatively straightforward quantification of a mixture s components. [Pg.108]

Oils are mixtures of mixed esters with different fatty acids distributed among the ester molecules. Generally, identification of specific esters is not attempted instead the oils are characterized by analysis of the fatty acid composition (8,9). The principal methods have been gas—Hquid and high performance Hquid chromatographic separation of the methyl esters of the fatty acids obtained by transesterification of the oils. Mass spectrometry and nmr are used to identify the individual esters. It has been reported that the free fatty acids obtained by hydrolysis can be separated with equal accuracy by high performance Hquid chromatography (10). A review of the identification and deterrnination of the various mixed triglycerides is available (11). [Pg.260]

The use of UV spectroscopy as an identification method is continuously decreasing in relative importance compared to the use of NMR or mass spectrometry. However, due to the general validity of Beer s law, it continues to be an appropriate method for quantitative studies such as the measurement of ionization constants (Section 4.04.2.1.3(iv) and (v)) and the determination of tautomeric equilibrium constants (Section 4.04.4.1.5). [Pg.197]

Identification of stmctures of toxic chemicals in environmental samples requires to use modern analytical methods, such as gas chromatography (GC) with element selective detectors (NPD, FPD, AED), capillary electrophoresis (CE) for screening purposes, gas chromatography/mass-spectrometry (GC/MS), gas chromatography / Fourier transform infra red spectrometry (GC/FTIR), nucleai magnetic resonance (NMR), etc. [Pg.416]

When the gas chromatograph is attached to a mass spectrometer, a very powerful analytical tool (gas chromatography-mass spectrometry, GC-MS) is produced. Vapour gas chromatography allows the analyses of mixtures but does not allow the definitive identification of unknown substances whereas mass spectrometry is good for the identification of a single compound but is less than ideal for the identification of mixtures of... [Pg.17]

Spark Source Mass Spectrometry (SSMS) is a method of trace level analysis—less than 1 part per million atomic (ppma)—in which a solid material, in the form of two conducting electrodes, is vaporized and ionized by a high-voltage radio frequency spark in vacuum. The ions produced from the sample electrodes are accelerated into a mass spectrometer, separated according to their mass-to-charge ratio, and collected for qualitative identification and quantitative analysis. [Pg.45]


See other pages where Identification spectrometry is mentioned: [Pg.873]    [Pg.253]    [Pg.261]    [Pg.397]    [Pg.420]    [Pg.420]    [Pg.138]    [Pg.198]    [Pg.200]    [Pg.201]    [Pg.356]    [Pg.84]    [Pg.132]    [Pg.166]    [Pg.400]    [Pg.402]    [Pg.59]    [Pg.85]    [Pg.386]    [Pg.65]    [Pg.189]    [Pg.18]    [Pg.28]    [Pg.170]    [Pg.105]    [Pg.230]    [Pg.253]   
See also in sourсe #XX -- [ Pg.176 ]




SEARCH



Electrospray ionization mass spectrometry identification

Identification and quantification of lipids using mass spectrometry

Identification applications mass spectrometry

Identification combinatorial library compounds, mass spectrometry

Identification of Proteins by Mass Spectrometry

Impurities identification with mass spectrometry

Mass spectrometry identification

Mass spectrometry peptide identification

Mass spectrometry protein identification

Mass spectrometry target identification

Metabolite identification spectrometry

Metabolite identification spectrometry applications

Protein identification, by mass spectrometry

Sample identification mass spectrometry

Spectrometry in Identification of Impurities

Tandem mass spectrometry biomarker identification

Tandem mass spectrometry metabolite identification

Tandem mass spectrometry molecular identification with

Tandem mass spectrometry protein identification

© 2024 chempedia.info