Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrocarbons xylene

The second process to finish phthalocyanine, which is more important for P-copper phthalocyanine, involves grinding the dry or aqueous form in a ball mill or a kneader (64). Agents such as sodium chloride, which have to be removed by boiling with water after the grinding, are used. Solvents like aromatic hydrocarbons, xylene, nitrobenzene or chlorobenzene, alcohols, ketones, or esters can be used (1). In the absence of a solvent, the cmde P-phthalocyanine is converted to the a-form (57,65) and has to be treated with a solvent to regain the P-modification. The aggregate stmcture also has an impact on the dispersion behavior of a- and P-copper phthalocyanine pigments (66). [Pg.505]

General hydrocarbons Xylene, decaline, TCB Hydrocarbons, benzene Gasoline, ether Benzene... [Pg.147]

Aromatic hydrocarbons Xylene-isomers Toluene Ethylbenzenes... [Pg.286]

These often correspond to aromatic hydrocarbons (xylene, toluene, ethylbenzenes, etc.) and ketones (methyl-ethylketone, methyl-isobutylketone, methyl-propyl-ketone, etc.). [Pg.597]

Per Cent Benzene.—Fraction B contains about 46 per cent of benzene, the rest being toluene and some xylene. Commercially it is termed 50 per cent benzene because 50 per cent of it distils below 100°. Fraction C contains the higher hydrocarbons xylene and mesitylene, etc., and practically no benzene or toluene. If treatment with alkali and acid has not been previously carried out these fractions are now subjected to such treatment to remove phenols and basic compounds and are then again fractionated to obtain the pure hydrocarbons. Most of the phenols are present in fraction D. This fraction is often not collected separately, but becomes part of the residue which is combined with the middle oil. The middle oil contains often as much as 50 per cent of naphthalene, which crystallizes out if the oil is cooled, and is separated by means of a centrifuge. The oil thrown off from the centrifuge yields a little benzene, toluene and... [Pg.498]

A new experimental technique (ZLC) has been developed and applied to study the diffusion of a range of hydrocarbons (xylene, benzene, cyclohexane and linear paraffins) in unaggregated crystals of zeolites A and X. The validity of the method was confirmed by varying the crystal size and the nature and flowrate of the purge gas. The method has advantages of speed and simplicity but the major advantage is that the intrusion of extraneous heat and mass transfer resistances is much less significant than in conventional uptake rate measurements. As a result, the new method can be applied to systems in which diffusion is too rapid to follow in a conventional sorption experiment. [Pg.362]

Coating plants Adhesive tapes. Magnetic tapes, Adhesive films. Photographic papers. Adhesive labels Naphtha, toluene, alcohols, esters, ketones (cyclohexanmethyl ethyl ketone), dimethylformamide, tetrahydrofuran, chlorinated hydrocarbons, xylene, dioxane... [Pg.1507]

More precisely, the rate of ozone formation depends closely on the chemical nature of the hydrocarbons present in the atmosphere. A reactivity scale has been proposed by Lowi and Carter (1990) and is largely utilized today in ozone prediction models. Thus the values indicated in Table 5.26 express the potential ozone formation as O3 formed per gram of organic material initially present. The most reactive compounds are light olefins, cycloparaffins, substituted aromatic hydrocarbons notably the xylenes, formaldehyde and acetaldehyde. Inversely, normal or substituted paraffins. [Pg.261]

Sodamide may be readily pulverised by grinding in a glass mortar under an inert hydrocarbon solvent (benzene, toluene, xylene, etc.). [Pg.197]

Oxidation of a side chain by alkaline permanganate. Aromatic hydrocarbons containing side chains may be oxidised to the corresponding acids the results are generally satisfactory for compounds with one side chain e.g., toluene or ethylbenzene -> benzoic acid nitrotoluene -> nitrobenzoic acid) or with two side chains e.g., o-xylene -> phthalic acid). [Pg.520]

The procedure is to pass purified hydrogen through a hot solution of the pure acid chloride in toluene or xylene in the presence of the catalyst the exit gases are bubbled through water to absorb the hydrogen chloride, and the solution is titrated with standard alkali from time to time so that the reduction may be stopped when the theoretical quantity of hydrogen chloride has been evolved. Further reduction would lead to the corresponding alcohol and hydrocarbon ... [Pg.691]

Concentrated sulphuric acid. The paraffin hydrocarbons, cych-paraffins, the less readily sulphonated aromatic hydrocarbons (benzene, toluene, xylenes, etc.) and their halogen derivatives, and the diaryl ethers are generally insoluble in cold concentrated sulphuric acid. Unsaturated hydrocarbons, certain polyalkylated aromatic hydrocarbons (such as mesitylene) and most oxygen-containing compounds are soluble in the cold acid. [Pg.1049]

Quantitative analysis. Spectroscopic analysis is widely used in the analysis of vitamin preparations, mixtures of hydrocarbons (e.y., benzene, toluene, ethylbenzene, xylenes) and other systems exhibiting characteristic electronic spectra. The extinction coefficient at 326 mp, after suitable treatment to remove other materials absorbing in this region, provides the best method for the estimation of the vitamin A content of fish oils. [Pg.1149]

More information has appeared concerning the nature of the side reactions, such as acetoxylation, which occur when certain methylated aromatic hydrocarbons are treated with mixtures prepared from nitric acid and acetic anhydride. Blackstock, Fischer, Richards, Vaughan and Wright have provided excellent evidence in support of a suggested ( 5.3.5) addition-elimination route towards 3,4-dimethylphenyl acetate in the reaction of o-xylene. Two intermediates were isolated, both of which gave rise to 3,4-dimethylphenyl acetate in aqueous acidic media and when subjected to vapour phase chromatography. One was positively identified, by ultraviolet, infra-red, n.m.r., and mass spectrometric studies, as the compound (l). The other was less stable and less well identified, but could be (ll). [Pg.222]

Amm oxida tion, a vapor-phase reaction of hydrocarbon with ammonia and oxygen (air) (eq. 2), can be used to produce hydrogen cyanide (HCN), acrylonitrile, acetonitrile (as a by-product of acrylonitrile manufacture), methacrylonitrile, hen onitrile, and toluinitnles from methane, propylene, butylene, toluene, and xylenes, respectively (4). [Pg.217]

Pyrolysis gasoline is a by-product of the steam cracking of hydrocarbon feeds in ethylene crackers (see Ethylene). Pyrolysis gasoline typically contains about 50—70 wt % aromatics, of which roughly 50% is benzene, 30% is toluene, and 20% is mixed xylenes (which includes EB). [Pg.410]

In 1997, UOP announced the PX-Plus process which also uses a selectivated catalyst to convert toluene to para-rich xylenes. Pina commercialized a TDP process known as the (T2PX) process in 1984 (70). It uses a proprietary catalyst to react toluene at 42—48% conversion with selectivities to benzene of 42 wt % and to xylenes of 46 wt %. The xylenes produced are at equiUbrium. Typical commercial operating conditions of 390—495°C, H2 partial pressure of 4.1 Mpa, H2/hydrocarbon molar ratio of 4 1, and LHSV of 1—2/h. Pina s first commercial implementation occurred in 1985 at their Port Arthur refinery. [Pg.417]

Some of the mixed xylenes that ate produced are used as solvents in the paints and coatings industry (see Solvents, industrial). However, this use has declined, particularly in the United States as environmental efforts to reduce hydrocarbon emissions into the air have increased. [Pg.424]

Properties. The DPXs are all crystalline soHds melting points and densities are given in Table 1. Their solubiUty in aromatic hydrocarbons is Limited. At 140°C, the solubiUty of DPXN in xylene is only about 10%. DPXC is more readily soluble in chlorinated solvents, eg, in methylene chloride at 25°C its solubihty is 10%. In contrast, the corresponding figure for DPXN is 1.5%. [Pg.431]

Commercial production of acetic acid has been revolutionized in the decade 1978—1988. Butane—naphtha Hquid-phase catalytic oxidation has declined precipitously as methanol [67-56-1] or methyl acetate [79-20-9] carbonylation has become the technology of choice in the world market. By-product acetic acid recovery in other hydrocarbon oxidations, eg, in xylene oxidation to terephthaUc acid and propylene conversion to acryflc acid, has also grown. Production from synthesis gas is increasing and the development of alternative raw materials is under serious consideration following widespread dislocations in the cost of raw material (see Chemurgy). [Pg.66]

Benzene [71-43-2] toluene [108-88-3] xylene [1330-20-7] and solvent naphtha are separated from the light oil. Benzene (qv), toluene (qv), and xylene are useful as solvents and chemical intermediates (see Xylenes and ethylbenzene). The cmde light oil is approximately 60—70% ben2ene, 12—16% toluene, 4—8% xylenes, 9—16% other hydrocarbons, and about 1% sulfur compounds (5) (see BTX processing). [Pg.162]

It is convenient to divide the petrochemical industry into two general sectors (/) olefins and (2) aromatics and their respective derivatives. Olefins ate straight- or branched-chain unsaturated hydrocarbons, the most important being ethylene (qv), [74-85-1] propjiene (qv) [115-07-17, and butadiene (qv) [106-99-0J. Aromatics are cycHc unsaturated hydrocarbons, the most important being benzene (qv) [71-43-2] toluene (qv) [108-88-3] p- s.y en.e [106-42-3] and (9-xylene [95-47-5] (see Xylenes and ethylbenzene) There are two other large-volume petrochemicals that do not fall easily into either of these two categories ammonia (qv) [7664-41-7] and methanol (qv) [67-56-1]. These two products ate derived primarily from methane [74-82-8] (natural gas) (see Hydrocarbons, c -c ). [Pg.171]

Solvents for A-type inks are aUphatic hydrocarbons, for example, hexane, textile spidts, Apco Thinner, lactane, VM P (varnish makers and painters ) naphtha, and mineral spirits. Aromatic hydrocarbons such as toluene and xylene are solvents for B-type inks. Generally, a blend of aUphatic and aromatic hydrocarbons is commonly used for this type of ink. [Pg.252]

Hydrochloric acid [7647-01-0], which is formed as by-product from unreacted chloroacetic acid, is fed into an absorption column. After the addition of acid and alcohol is complete, the mixture is heated at reflux for 6—8 h, whereby the intermediate malonic acid ester monoamide is hydroly2ed to a dialkyl malonate. The pure ester is obtained from the mixture of cmde esters by extraction with ben2ene [71-43-2], toluene [108-88-3], or xylene [1330-20-7]. The organic phase is washed with dilute sodium hydroxide [1310-73-2] to remove small amounts of the monoester. The diester is then separated from solvent by distillation at atmospheric pressure, and the malonic ester obtained by redistillation under vacuum as a colorless Hquid with a minimum assay of 99%. The aqueous phase contains considerable amounts of mineral acid and salts and must be treated before being fed to the waste treatment plant. The process is suitable for both the dimethyl and diethyl esters. The yield based on sodium chloroacetate is 75—85%. Various low molecular mass hydrocarbons, some of them partially chlorinated, are formed as by-products. Although a relatively simple plant is sufficient for the reaction itself, a si2eable investment is required for treatment of the wastewater and exhaust gas. [Pg.467]

PMMA is not affected by most inorganic solutions, mineral oils, animal oils, low concentrations of alcohols paraffins, olefins, amines, alkyl monohahdes and ahphatic hydrocarbons and higher esters, ie, >10 carbon atoms. However, PMMA is attacked by lower esters, eg, ethyl acetate, isopropyl acetate aromatic hydrocarbons, eg, benzene, toluene, xylene phenols, eg, cresol, carboHc acid aryl hahdes, eg, chlorobenzene, bromobenzene ahphatic acids, eg, butyric acid, acetic acid alkyl polyhaHdes, eg, ethylene dichloride, methylene chloride high concentrations of alcohols, eg, methanol, ethanol 2-propanol and high concentrations of alkahes and oxidizing agents. [Pg.262]


See other pages where Hydrocarbons xylene is mentioned: [Pg.2861]    [Pg.348]    [Pg.311]    [Pg.312]    [Pg.79]    [Pg.1976]    [Pg.2861]    [Pg.348]    [Pg.311]    [Pg.312]    [Pg.79]    [Pg.1976]    [Pg.195]    [Pg.2419]    [Pg.2789]    [Pg.2790]    [Pg.395]    [Pg.29]    [Pg.416]    [Pg.416]    [Pg.417]    [Pg.421]    [Pg.300]    [Pg.175]    [Pg.503]    [Pg.354]    [Pg.357]    [Pg.366]   
See also in sourсe #XX -- [ Pg.521 ]




SEARCH



Aromatic hydrocarbons xylene

Hydrocarbon processing xylene isomer separation

© 2024 chempedia.info