Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Herbicide sampling

FIGURE 7-24. Separation of an 11-component herbicide sample as a function of the initial organic in the mobile phase, (a) Gradient 15-100% acetonitrile/water over 70 min, R = 2.1. (b) Gradient 25-100% acetonitrile/water over 60 min, R = 1.9. (c) Gradient 35-100% acetonitrile/water over 50 min, R = 1.5. Gradient slope and other conditions the same as in Figure 7-23. (Reproduced with permission from reference 3.)... [Pg.310]

Groundwater Monitoring N°of Samples Containing Herbicides Samples > 0.1 pg/l Concentration Max. [Pg.126]

This study was supported by the Deutsche For-schungsgemeinschaft. The experiments were made possible through a generous supply of pure herbicide samples which were gifts from BASF AG, Limburgerhof and Lud-... [Pg.127]

In accordance with the type of crop protection procedure, the stages of the work had different cycle times. For herbicide application, the complete task was done in approximately 18 minutes, while, in the fertilizer application was finished in only 5 minutes. Samples collection allowed us to identify the Vibration Dose Value in RMS (RMS VDV), maximum peak level (Peak), and value of daily exposure (8-hour reference period) to WBV (A(8)). EMB-201A aircraft applying herbicide, (sample = 01 36 41, n = 5792), showed RMS VDV = 8,053 m/s and Peak = 141,490 m/s. Also applying herbicide, EMB-202 aircraft (sample = 01 31 40, n = 5493), showed RMS VDV = 11,098 m/s and Peak=96,774 m/s. Finally, EMB-202 aircraft applying fertilizer (sample = 01 17 11, n = 4624) showed RMS VDV = 9,470 m/s and Peak = 120,277 m/s. Figure 1 show data points corresponding to the combined axis (X, Y and Z) Vibration Total Value (RMS VTV) for these three situations respectively. [Pg.117]

The flexibility of the bulk blending system and the close relationship with the farmer allow the bulk blender to provide a number of valuable supplementary services, such as adding herbicides, insecticides, micronutrients, or seeds to the blends bagging blends liming and sampling soil. Consultation services and custom appHcation can also be provided as can sale of anhydrous ammonia or nitrogen solution. [Pg.238]

Numerous collections of herbicide analysis methods have been pubUshed (276—279). An increased emphasis has been placed on the first step in the environmental sampling process, that of obtaining a representative, uncontaminated sample. If this is to be accompUshed, consideration must be made of such factors as sample size and location (280—283). After the sample has been obtained, it must be stored in such a way as to minimize degradation. This generally consists of refrigeration, possibly preceded by some type of drying (284). [Pg.49]

Preparation of soil—sediment of water samples for herbicide analysis generally has consisted of solvent extraction of the sample, followed by cleanup of the extract through Uquid—Uquid or column chromatography, and finally, concentration through evaporation (285). This complex but necessary series of procedures is time-consuming and is responsible for the high cost of herbicide analyses. The advent of soUd-phase extraction techniques in which the sample is simultaneously cleaned up and concentrated has condensed these steps and thus gready simplified sample preparation (286). [Pg.49]

Supercritical CO2 has also beea tested as a solveat for the removal of organic contaminants from sod. At 60°C and 41.4 MPa (6,000 psi), more than 95% of contaminants, such as diesel fuel and polychlotinated biphenyls (PCBs), may be removed from sod samples (77). Supercritical CO2 can also extract from sod the foUowiag hydrocarbons, polyaromatic hydrocarbons, chlotinated hydrocarbons, phenols, chlotinated phenols, and many pesticides (qv) and herbicides (qv). Sometimes a cosolvent is required for extracting the more polar contaminants (78). [Pg.226]

An on-line concentration, isolation, and Hquid chromatographic separation method for the analysis of trace organics in natural waters has been described (63). Concentration and isolation are accompHshed with two precolumns connected in series the first acts as a filter for removal of interferences the second actually concentrates target solutes. The technique is appHcable even if no selective sorbent is available for the specific analyte of interest. Detection limits of less than 0.1 ppb were achieved for polar herbicides (qv) in the chlorotriazine and phenylurea classes. A novel method for deterrnination of tetracyclines in animal tissues and fluids was developed with sample extraction and cleanup based on tendency of tetracyclines to chelate with divalent metal ions (64). The metal chelate affinity precolumn was connected on-line to reversed-phase hplc column, and detection limits for several different tetracyclines in a variety of matrices were in the 10—50 ppb range. [Pg.245]

The development of methods of analysis of tria2ines and thek hydroxy metabohtes in humic soil samples with combined chromatographic and ms techniques has been described (78). A two-way approach was used for separating interfering humic substances and for performing stmctural elucidation of the herbicide traces. Humic samples were extracted by supercritical fluid extraction and analy2ed by both hplc/particle beam ms and a new ms/ms method. The new ms /ms unit was of the tandem sector field-time-of-flight/ms type. [Pg.246]

A multiresidue analytical method based on sohd-phase extraction enrichment combined with ce has been reported to isolate, recover, and quantitate three sulfonylurea herbicides (chlorsulfuron, chlorimuron, and metasulfuron) from soil samples (105). Optimi2ation for ce separation was achieved using an overlapping resolution map scheme. The recovery of each herbicide was >80% and the limit of detection was 10 ppb (see Soil chemistry of pesticides). [Pg.248]

The efficient recovery of volatile nitrosamines from frankfurters, followed by gc with chemiluminescence detection, has been described (133). Recoveries ranged from 84.3 to 104.8% for samples spiked at the 20 ppb level. Methods for herbicide residues and other contaminants that may also relate to food have been discussed. Inorganic elements in food can be deterrnined by atomic absorption (AA) methods. These methods have been extensively reviewed. Table 8 Hsts methods for the analysis of elements in foods (134). [Pg.250]

Aroclor 1248, Aroclor 1254, and Aroclor 1260. Quantitation is by comparison of chromatograms with standard concentrations of pure compounds treated in an identical manner. The phenoxy acid herbicides (2,4-dichlorophenoxy)acetic acid (2,4-D), sUvex, and (2,4,5-trichlorophenoxy)acetic acid (2,4,5-T) can be deterrnined by electron-capture detection after extraction and conversion to the methyl esters with BF.-methanol. The water sample must be acidified to pH <2 prior to extraction with chloroform. [Pg.233]

Contractors at Sites B, D, G, I, and J had incomplete sampling practices and as a result were not able to evaluate PPE levels based on monitoring data. Eor example, both contractors SSAHPs at Site I lacked provisions for monitoring site hazards such as metals, pesticides, herbicides, and semi-volatile organic compounds (SVOCs) that could not be evaluated with a PID. Since worker exposures to the range of hazards on site had not been characterized, PPE was not selected based on its performance relative to the nature and level of site hazards. [Pg.190]

At Site I, personnel and equipment decontamination procedures were not monitored for their effectiveness in accordance with HAZ-WOPER requirements. The Site I subcontractor did not have provisions for particulate sampling, evaluating exposure to pesticides and herbicides, or evaluating the effectiveness of site zone boundaries and personnel decontamination procedures. Additionally, monitoring had not been conducted to verify that decontamination was not necessary for employees who leave the exclusion zone and enter a clean zone without undergoing decontamination. [Pg.203]

I. Fener, V. Pichon, M-C. Hennion and D. Barcelo, Automated sample preparation with exti action columns by means of anti-isoproturon immunosorbents foi the determination of phenylurea herbicides in water followed by liquid chi omatography-diode aixay detection and liquid cliromatogi aphy-atmospheric pressure chemical ionization mass spectrometiy , 7. Chromatogr. 777 91-98 (1997). [Pg.132]

Chlorophenoxy acids are relatively polar pesticides which are usually determined by LC because volatile derivatives have to be prepared for GC analysis. This group of herbicides can be detected by multiresidue methods combined with automated procedures for sample clean-up, although selectivity and sensitivity can be enhanced by coupled-column chromatographic techniques (52). The experimental conditions for Such analyses are shown in Table 13.1. [Pg.353]

The first attempts employing two Cjg columns showed that the selectivity was not high enough, although this improved when the first column was substituted by a 5 p.m GFF n internal surface rcversed-phase material. This is known as a restricted-access-material (RAM) column which, since it restricts some compounds because of their size and includes rcversed-phase interaction and ionic exchange, is very useful for analysing herbicides in samples with high contents of humic and fulvic acids (54). [Pg.353]

Figure 13.10 LC-LC chromatogram of a surface water sample spiked at 2 p.g 1 with ati azine, and its metabolites (registered at 220 nm). Conditions volume of sample injected, 2 ml clean-up time, 2.60 min ti ansfer time, 4.2 min The blank was subtracted. Peak identification is as follows 1, DIA 2, HA 3, DEA 4, atrazine. Reprinted from Journal of Chromatography, A 778, F. Hernandez et al, New method for the rapid detemiination of triazine herbicides and some of thek main metabolites in water by using coupled-column liquid cliromatography and large volume injection , pp. 171-181, copyright 1997, with permission from Elsevier Science. Figure 13.10 LC-LC chromatogram of a surface water sample spiked at 2 p.g 1 with ati azine, and its metabolites (registered at 220 nm). Conditions volume of sample injected, 2 ml clean-up time, 2.60 min ti ansfer time, 4.2 min The blank was subtracted. Peak identification is as follows 1, DIA 2, HA 3, DEA 4, atrazine. Reprinted from Journal of Chromatography, A 778, F. Hernandez et al, New method for the rapid detemiination of triazine herbicides and some of thek main metabolites in water by using coupled-column liquid cliromatography and large volume injection , pp. 171-181, copyright 1997, with permission from Elsevier Science.
Figure 13.11 Column-switcliing RPLC trace of a surface water sample spiked with eight chlorophenoxyacid herbicides at the 0.5 p-g 1 level 1, 2,4-dichlorophenoxyacetic acid 2, 4-chloro-2-methylphenoxyacetic acid 3, 2-(2,4-diclilorophenoxy) propanoic acid 4, 2-(4-cliloro-2-methylphenoxy) propanoic acid 5, 2,4,5-trichlorophenoxyacetic acid 6, 4-(2,4-dichlorophenoxy) butanoic acid 7, 4-(4-chloro-2-methylphenoxy) butanoic acid 8, 2-(2,4,5-tiichlorophenoxy) propionic acid. Reprinted from Analytica Chimica Acta, 283, J. V. Sancho-Llopis et al., Rapid method for the determination of eight chlorophenoxy acid residues in environmental water samples using off-line solid-phase extraction and on-line selective precolumn switcliing , pp. 287-296, copyright 1993, with permission from Elsevier Science. Figure 13.11 Column-switcliing RPLC trace of a surface water sample spiked with eight chlorophenoxyacid herbicides at the 0.5 p-g 1 level 1, 2,4-dichlorophenoxyacetic acid 2, 4-chloro-2-methylphenoxyacetic acid 3, 2-(2,4-diclilorophenoxy) propanoic acid 4, 2-(4-cliloro-2-methylphenoxy) propanoic acid 5, 2,4,5-trichlorophenoxyacetic acid 6, 4-(2,4-dichlorophenoxy) butanoic acid 7, 4-(4-chloro-2-methylphenoxy) butanoic acid 8, 2-(2,4,5-tiichlorophenoxy) propionic acid. Reprinted from Analytica Chimica Acta, 283, J. V. Sancho-Llopis et al., Rapid method for the determination of eight chlorophenoxy acid residues in environmental water samples using off-line solid-phase extraction and on-line selective precolumn switcliing , pp. 287-296, copyright 1993, with permission from Elsevier Science.
E. Hernandez, C. Hidalgo, J. V. Sancho and E. J. Eopez, Coupled-column liquid chi omatography applied to the ti ace-level determination of tiiazine herbicides and some of their metabolites in water samples . Anal. Chem. 70 3322-3328 (1998). [Pg.375]

Polarographic methods can be used to examine food and food products biological materials herbicides, insecticides and pesticides petroleum and petroleum products pharmaceuticals. The examination of blood and urine samples is frequently carried out to establish the presence of drugs and to obtain quantitative results. [Pg.615]

The two examples of sample preparation for the analysis of trace material in liquid matrixes are typical of those met in the analytical laboratory. They are dealt with in two quite different ways one uses the now well established cartridge extraction technique which is the most common the other uses a unique type of stationary phase which separates simultaneously on two different principles. Firstly, due to its design it can exclude large molecules from the interacting surface secondly, small molecules that can penetrate to the retentive surface can be separated by dispersive interactions. The two examples given will be the determination of trimethoprim in blood serum and the determination of herbicides in pond water. [Pg.225]

These high levels were sporadic and transitory. However, some of them were high enough to have caused phytotoxicity, and more work needs to be done to establish whether herbicides are having adverse effects upon populations of aquatic plants in areas highlighted in this study. It should also be borne in mind that there may have been additive or synergistic effects caused by the combinations of herbicides found in these samples. For example, urea herbicides such as diuron and chlortoluron act upon photosynthesis by a common mechanism, so it seems likely that any effects upon aquatic plants will be additive. Similarly, simazine and atrazine share a common mechanism of action. [Pg.263]

With the acceptable concentrations of herbicides in drinking water being taken to very low levels by some regulatory authorities (e.g., the EC), there has been interest in very low levels of atrazine present in some samples of groundwater and in drinking water. This finding illustrates the point that mobility of pesticides becomes increasingly evident as sensitivity of analysis improves. [Pg.263]


See other pages where Herbicide sampling is mentioned: [Pg.173]    [Pg.307]    [Pg.309]    [Pg.985]    [Pg.233]    [Pg.173]    [Pg.307]    [Pg.309]    [Pg.985]    [Pg.233]    [Pg.228]    [Pg.49]    [Pg.50]    [Pg.52]    [Pg.52]    [Pg.24]    [Pg.548]    [Pg.151]    [Pg.393]    [Pg.212]    [Pg.214]    [Pg.243]    [Pg.248]    [Pg.248]    [Pg.332]    [Pg.350]    [Pg.359]    [Pg.227]    [Pg.92]    [Pg.92]   
See also in sourсe #XX -- [ Pg.503 ]




SEARCH



© 2024 chempedia.info