Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Furnace atomic plasma emission source

Other plasmas at atmospheric pressure, such as the FAPES (furnace atomic plasma emission source) developed by Blades [580] have been used as ion sources for mass spectrometry. With FAPES detection limits in the fg range can be obtained, as microsamples can be analyzed with virtually no transport losses (Fig. 117) [581]. However, further investigations on interferences certainly still need to be made. [Pg.272]

Furnace atomisation plasma emission spectrometry (FAPES) this consists of an atmospheric pressure source combining a capacitively coupled radiofrequency helium plasma formed inside a graphite tube which contains an axial powered electrode. This miniplasma has rarely been used in analytical atomic spectrometry, probably because of the small number of users and a lack of information about its applications and capabilities [7]. [Pg.16]

R. E. Sturgeon, Furnace atomisation plasma emission/ionisation review of an underutilized source for atomic and molecular spectrometry. Can. J. Anal. Sci. Spectrosc., 49, 2004, 385-397. [Pg.48]

Because of differences in ecotoxicity between the different mercury species and as many mercury species are volatile or can easily be transformed into volatile compounds, they can readily be separated by gas chromatography and detected by MIP optical emission spectrometry for speciation. Freeh et al. [520] compared the Bee-nakker microwave-induced plasma (MIP) and a furnace atomization plasma excitation spectrometry (FAPES) source for the determination of derivatized mercury species in natural gas condensate with coupling to high-resolution GC for sample introduction and monitoring the emission of the 253.6 nm mercury hne. The precision of replicate measurements for dimethyl-, methylbutyl-, and dibutyhnercury... [Pg.258]

Two colorimetric methods are recommended for boron analysis. One is the curcumin method, where the sample is acidified and evaporated after addition of curcumin reagent. A red product called rosocyanine remains it is dissolved in 95 wt % ethanol and measured photometrically. Nitrate concentrations >20 mg/L interfere with this method. Another colorimetric method is based upon the reaction between boron and carminic acid in concentrated sulfuric acid to form a bluish-red or blue product. Boron concentrations can also be deterrnined by atomic absorption spectroscopy with a nitrous oxide—acetjiene flame or graphite furnace. Atomic emission with an argon plasma source can also be used for boron measurement. [Pg.231]

Besides flame AA and graphite furnace AA, there is a third atomic spectroscopic technique that enjoys widespread use. It is called inductively coupled plasma spectroscopy. Unlike flame AA and graphite furnace AA, the ICP technique measures the emissions from an atomization/ionization/excitation source rather than the absorption of a light beam passing through an atomizer. [Pg.261]

Fundamental requirements for an atomic absorption experiment are shown in Figure 21-2. Principal differences between atomic and ordinary molecular spectroscopy lie in the light source (or lack of a light source in atomic emission), the sample container (the flame, furnace, or plasma), and the need to subtract background emission. [Pg.462]

One of the most challenging aspects of atomic spectrometry is the incredibly wide variety of sample types that require elemental analysis. Samples cover the gamut of solids, liquids, and gases. By the nature of most modem spectrochemical methods, the latter two states are much more readily presented to sources that operate at atmospheric pressure. The most widely used of these techniques are flame and graphite furnace atomic absorption spectrophotometry (FAAS and GF-AAS) [1,2] and inductively coupled plasma atomic emission and mass spectrometries (ICP-AES and MS) [3-5]. As described in other chapters of this volume, ICP-MS is the workhorse technique for the trace element analysis of samples in the solution phase—either those that are native liquids or solids that are subjected to some sort of dissolution procedure. [Pg.261]

Emission spectrometry using chemical flames (flame atomic emission spectrometry, FAES) as excitation sources is the earlier counterpart to flame atomic absorption spectrometry. In this context emission techniques involving arc/spark and direct or inductively coupled plasma for excitation are omitted and treated separately. Other terms used for this technique include optical emission, flame emission, flame photometry, atomic emission, and this technique could encompass molecular emission, graphite furnace atomic emission and molecular emission cavity analysis (MEGA). [Pg.1570]

Atomic absorption spectrometry (AAS) has been widely used. Although flame AAS was useful in the past [45], electrothermal AAS is now preferred [30,46-48] as well as a simultaneous multielement atomic absorption continuum source coupled with a carbon furnace atomizer (SIMAAC) [49] or inductively coupled plasma atomic emission spectrometry (ICPAES) [39]. [Pg.336]

In AFS, the analyte is introduced into an atomiser (flame, plasma, glow discharge, furnace) and excited by monochromatic radiation emitted by a primary source. The latter can be a continuous source (xenon lamp) or a line source (HCL, EDL, or tuned laser). Subsequently, the fluorescence radiation is measured. In the past, AFS has been used for elemental analysis. It has better sensitivity than many atomic absorption techniques, and offers a substantially longer linear range. However, despite these advantages, it has not gained the widespread usage of atomic absorption or emission techniques. The problem in AFS has been to obtain a... [Pg.624]

Different analytical techniques such as ICP-OES (optical emission spectrometry with inductively coupled plasma source), XRF (X-ray fluorescence analysis), AAS (atomic absorption spectrometry) with graphite furnace and flame GF-AAS and FAAS, NAA (neutron activation analysis) and others, are employed for the trace analysis of environmental samples. The main features of selected atomic spectrometric techniques (ICP-MS, ICP-OES and AAS) are summarized in Table 9.20.1 The detection ranges and LODs of selected analytical techniques for trace analysis on environmental samples are summarized in Figure 9.15.1... [Pg.298]

Figure 14.16—Elements determined by AAS or FES. Most elements can be determined by atomic-absorption or flame emission using one of the available atomisation modes (burner, graphite furnace or hydride formation). Sensitivity varies enormously from one element to another. The representation above shows the elements in their periodic classification in order to show the wide use of these methods. Some of the lighter elements, C, N, O, F, etc. in the figure can be determined using a high temperature thermal source a plasma torch, in association with a spcctropholometric device (ICP-AbS) or a mass spectrometer (1CP-MS). Figure 14.16—Elements determined by AAS or FES. Most elements can be determined by atomic-absorption or flame emission using one of the available atomisation modes (burner, graphite furnace or hydride formation). Sensitivity varies enormously from one element to another. The representation above shows the elements in their periodic classification in order to show the wide use of these methods. Some of the lighter elements, C, N, O, F, etc. in the figure can be determined using a high temperature thermal source a plasma torch, in association with a spcctropholometric device (ICP-AbS) or a mass spectrometer (1CP-MS).
Figure 13.18 Elements measured by AAS and FES. Most elements can be measured by atomic absorption or flame emission by using one of the available modes of atomization (burner, graphite furnace or device for hydride formation). The sensitivity varies from several ppb (Cu, Cd, Cr) to several ppm (the lanthanides). The elements of the table (in white) for which the atomic number is not shown are not measurable by atomic absorption. However, the hybrid apparatus AAS/OES containing plasmas as a thermal source, has more recently pushed back the limits of this method of elemental analysis. Figure 13.18 Elements measured by AAS and FES. Most elements can be measured by atomic absorption or flame emission by using one of the available modes of atomization (burner, graphite furnace or device for hydride formation). The sensitivity varies from several ppb (Cu, Cd, Cr) to several ppm (the lanthanides). The elements of the table (in white) for which the atomic number is not shown are not measurable by atomic absorption. However, the hybrid apparatus AAS/OES containing plasmas as a thermal source, has more recently pushed back the limits of this method of elemental analysis.

See other pages where Furnace atomic plasma emission source is mentioned: [Pg.1545]    [Pg.30]    [Pg.232]    [Pg.625]    [Pg.605]    [Pg.259]    [Pg.60]    [Pg.471]    [Pg.466]    [Pg.554]    [Pg.411]    [Pg.54]    [Pg.241]    [Pg.277]    [Pg.345]    [Pg.251]    [Pg.485]    [Pg.202]    [Pg.242]    [Pg.282]    [Pg.589]    [Pg.240]    [Pg.665]    [Pg.431]    [Pg.412]    [Pg.72]    [Pg.1576]    [Pg.92]    [Pg.518]   
See also in sourсe #XX -- [ Pg.311 ]




SEARCH



Atomic emission

Atomic sources

Atoms sources

Furnace atomizers

PLASMA ATOMIC EMISSION

Plasma sources

© 2024 chempedia.info