Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fundamental particle size

Table 9 shows the classification system for blacks most commonly used in mbber. The ASTM numbering system is based on the fundamental particle size of the black. Particle size is determined by several methods, including iodine absorption, nitrogen absorption, and light scattering. [Pg.243]

An important assumption for fundamental particle sizing by PCS is that the particles be noninteracting. It has been previously stated that particles are assumed to be in a dilute suspension. In order to ensure that this condition applies, a series of measurements is recommended at increasing dilutions to demonstrate that particle interaction be absent. [Pg.3551]

A fundamental requirement in powder processing is characterization of the as-received powders (10—12). Many powder suppHers provide information on tap and pour densities, particle size distributions, specific surface areas, and chemical analyses. Characterization data provided by suppHers should be checked and further augmented where possible with in-house characterization. Uniaxial characterization compaction behavior, in particular, is easily measured and provides data on the nature of the agglomerates in a powder (13,14). [Pg.310]

The compounding technique for latex differs from that of dry mbber and is fundamentally simpler. A critical factor of colloidal stabiUty makes necessary that each ingredient is of optimum particle size, pH, and concentration when added as an aqueous dispersion to the latex. Rubber latex is a colloidal aqueous emulsion of an elastomer and natural mbber latex is the milky exudation of certain trees and plants that of greatest commercial importance is the... [Pg.252]

Ultrasonic Spectroscopy. Information on size distribution maybe obtained from the attenuation of sound waves traveling through a particle dispersion. Two distinct approaches are being used to extract particle size data from the attenuation spectmm an empirical approach based on the Bouguer-Lambert-Beerlaw (63) and a more fundamental or first-principle approach (64—66). The first-principle approach implies that no caHbration is required, but certain physical constants of both phases, ie, speed of sound, density, thermal coefficient of expansion, heat capacity, thermal conductivity. [Pg.133]

For determination of the aerodynamic diameters of particles, the most commonly apphcable methods for particle-size analysis are those based on inertia aerosol centrifuges, cyclones, and inertial impactors (Lundgren et al.. Aerosol Measurement, University of Florida, Gainesville, 1979 and Liu, Fine Paiiicles—Aerosol Generation, Measurement, Sampling, and Analysis, Academic, New York, 1976). Impactors are the most commonly used. Nevertheless, impactor measurements are subject to numerous errors [Rao and Whitby, Am. Ind. Hyg. A.s.soc.]., 38, 174 (1977) Marple and WiUeke, "Inertial Impactors, in Lundgren et al.. Aerosol Measurement and Fuchs, "Aerosol Impactors, in Shaw, Fundamentals of Aerosol Sci-... [Pg.1582]

Example 4 Calculation of Sample Weight for Surface Moisture Content An example is given with reference to material with minimal internal or pore-retained moisture such as mineral concentrates wherein physically adhering moisture is the sole consideration. With this simphfication, a moisture coefficient K is employed as miiltipher of nominal top-size particle size d taken to the third power to account for surface area. Adapting fundamental sampling theory to moisture sampling, variance is of a minimum sample quantity is expressed as... [Pg.1758]

Column manufacturers normally provide basic information about their columns, such as plate count, particle size, exclusion limit, and calibration curve. This information is necessary and fundamental, however, it is not sufficient to allow users to make an intelligent decision about a column for a specific application. For example, separation efficiency, the dependence of separation efficiency on the mobile phase, the ability to separate the system peaks from the polymer peak, the symmetry of the polymer peak, and the possible interaction with polymers are seldom provided. [Pg.500]

There is a general understanding that the size of ash particles produced during coal combustion decreases with decreasing coal particle size and with decreasing mineral content of the parent coal particles. There are, however, no fundamental models that allow the researchers to predict the change in the size of ash particles when coal is finely ground or beneficiated or how ash size is affected by combustion conditions. [Pg.130]

The synthesis of nanoparticles has been intensively pursued not only for their fundamental scientific interest, but also for many technological applications [1]. For many of these applications, the synthesis of monodisperse nanoparticles (standard deviations a < 5%) with controlled particle sizes is of key importance, because the electrical, optical, and... [Pg.43]

Below the dotted line in Table I we list less fundamental differences between the two methods. Column lengths tend to be somewhat shorter in HPLC using small particle PB as a consequence of the high efficiencies that can be generated with the smaller particle sizes. For analytical scale HPLC, tube diameters of 3-4 mm are selected however, for preparative scale, tube diameters of 1 cm or above are not uncommon. [Pg.229]

In industry, the emphasis is mainly on developing an active, selective, stable and mechanically robust catalyst. To accomplish this, tools are needed which identify those structural properties that discriminate efficient from less efficient catalysts. All information that helps to achieve this is welcome. Empirical relationships between those factors that govern catalyst composition (e.g. particle size and shape, and pore dimensions) and those that determine catalytic performance are extremely useful in catalyst development, although they do not always give fundamental insights into how the catalyst operates on the molecular level. [Pg.129]

As the reader might have noticed, many conclusions in electrocatalysis are based on results obtained with electrochemical techniques. In situ characterization of nanoparticles with imaging and spectroscopic methods, which is performed in a number of laboratories, is invaluable for the understanding of PSEs. Identification of the types of adsorption sites on supported metal nanoparticles, as well as determination of the influence of particle size on the adsorption isotherms for oxygen, hydrogen, and anions, are required for further understanding of the fundamentals of electrocatalysis. [Pg.551]

Selection of columns and mobile phases is determined after consideration of the chemistry of the analytes. In HPLC, the mobile phase is a liquid, while the stationary phase can be a solid or a liquid immobilised on a solid. A stationary phase may have chemical functional groups or compounds physically or chemically bonded to its surface. Resolution and efficiency of HPLC are closely associated with the active surface area of the materials used as stationary phase. Generally, the efficiency of a column increases with decreasing particle size, but back-pressure and mobile phase viscosity increase simultaneously. Selection of the stationary phase material is generally not difficult when the retention mechanism of the intended separation is understood. The fundamental behaviour of stationary phase materials is related to their solubility-interaction... [Pg.236]

One of the most obvious properties of a disperse system is the vast interfacial area that exists between the dispersed phase and the dispersion medium [48-50]. When considering the surface and interfacial properties of the dispersed particles, two factors must be taken into account the first relates to an increase in the surface free energy as the particle size is reduced and the specific surface increased the second deals with the presence of an electrical charge on the particle surface. This section covers the basic theoretical concepts related to interfacial phenomena and the characteristics of colloids that are fundamental to an understanding of the behavior of any disperse systems having larger dispersed phases. [Pg.247]

Ackeskog et al. (1993) made the first heat transfer measurements in a scale model of a pressurized bubbling bed combustor. These results shed light on the influence of particle size, density and pressure levels on the fundamental mechanism of heat transfer, e.g., the increased importance of the gas convective component with increased pressure. [Pg.87]

However, this section pursues particle size measurement and evaluates its importance (as well as density) for the purpose of classifying the suitability of powders for long-distance pneumatic conveying applications. Initially, an appreciation of the fundamentals and the existing powder classification techniques is required. [Pg.715]

Table I lists a variety of organic nonlinear materials which have appeared in the literature their relative powder efficiencies, absorption cutoffs and /3 values (if available) are also provided. These materials are "typical" only in that they represent results from the few classes of organic compounds investigated to date, yet they are instructive in that one learns which molecular properties may be important. A few caveats are in order to avoid misinterpretation of the data in Table I. Except for compound 10 (19) all the powder efficiency and cutoff data are from our own measurements. Powder measurements were performed on ungraded samples using the Nd YAG output at 1.06/t as fundamental since powder efficiency is a function of particle size distribution and a variety of other factors (3) these values are only semiquantitative. The cutoff values are the wavelengths for which 10-4M solutions in ethanol (unless otherwise indicated) have no absorbance. The cutoff values will be similar to those found in crystal state except where intermolecular charge transfer is important in the crystal or the molecule is solvatochromic, this latter effect being quite common for cyanine dyes such as... Table I lists a variety of organic nonlinear materials which have appeared in the literature their relative powder efficiencies, absorption cutoffs and /3 values (if available) are also provided. These materials are "typical" only in that they represent results from the few classes of organic compounds investigated to date, yet they are instructive in that one learns which molecular properties may be important. A few caveats are in order to avoid misinterpretation of the data in Table I. Except for compound 10 (19) all the powder efficiency and cutoff data are from our own measurements. Powder measurements were performed on ungraded samples using the Nd YAG output at 1.06/t as fundamental since powder efficiency is a function of particle size distribution and a variety of other factors (3) these values are only semiquantitative. The cutoff values are the wavelengths for which 10-4M solutions in ethanol (unless otherwise indicated) have no absorbance. The cutoff values will be similar to those found in crystal state except where intermolecular charge transfer is important in the crystal or the molecule is solvatochromic, this latter effect being quite common for cyanine dyes such as...

See other pages where Fundamental particle size is mentioned: [Pg.124]    [Pg.295]    [Pg.124]    [Pg.295]    [Pg.253]    [Pg.4]    [Pg.271]    [Pg.1606]    [Pg.2173]    [Pg.265]    [Pg.1135]    [Pg.12]    [Pg.251]    [Pg.452]    [Pg.119]    [Pg.7]    [Pg.90]    [Pg.91]    [Pg.260]    [Pg.333]    [Pg.537]    [Pg.144]    [Pg.174]    [Pg.62]    [Pg.278]    [Pg.198]    [Pg.94]    [Pg.141]    [Pg.624]    [Pg.191]    [Pg.794]    [Pg.47]    [Pg.431]    [Pg.282]    [Pg.284]   
See also in sourсe #XX -- [ Pg.68 ]




SEARCH



Fundamental particle

© 2024 chempedia.info