Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fuel diffusion layer

Figure 1. Schematic view of the structure of a polymer electrolyte membrane fuel cell. (1) Polymer electrolyte membrane (2) anode catalyst (3) fuel diffusion layer (4) anode end-plate with flow channel (5) cathode catalyst (6) air diffusion layer (7) cathode end-plate with flow channel. Figure 1. Schematic view of the structure of a polymer electrolyte membrane fuel cell. (1) Polymer electrolyte membrane (2) anode catalyst (3) fuel diffusion layer (4) anode end-plate with flow channel (5) cathode catalyst (6) air diffusion layer (7) cathode end-plate with flow channel.
The transient response of DMFC is inherently slower and consequently the performance is worse than that of the hydrogen fuel cell, since the electrochemical oxidation kinetics of methanol are inherently slower due to intermediates formed during methanol oxidation [3]. Since the methanol solution should penetrate a diffusion layer toward the anode catalyst layer for oxidation, it is inevitable for the DMFC to experience the hi mass transport resistance. The carbon dioxide produced as the result of the oxidation reaction of methanol could also partly block the narrow flow path to be more difScult for the methanol to diflhise toward the catalyst. All these resistances and limitations can alter the cell characteristics and the power output when the cell is operated under variable load conditions. Especially when the DMFC stack is considered, the fluid dynamics inside the fuel cell stack is more complicated and so the transient stack performance could be more dependent of the variable load conditions. [Pg.593]

The main components of a PEM fuel cell are the flow channels, gas diffusion layers, catalyst layers, and the electrolyte membrane. The respective electrodes are attached on opposing sides of the electrolyte membrane. Both electrodes are covered with diffusion layers, and the flow channels/current collectors. The flow channels collect current from the electrodes while providing the fuel or oxidant with access to the electrodes. The gas diffusion layer allows gases to diffuse to the electro-catalysts and provides electrical contact throughout the catalyst layers. Within the anode catalyst layer, the fuel (typically H2) is oxidized to produce electrons and protons. The electrons travel through an external circuit to produce electricity, while the protons pass through the proton conducting electrolyte membrane. Within the cathode catalyst layer, the electrons and protons recombine with the oxidant (usually 02) to produce water. [Pg.336]

An analysis of the individual PEM components offers evidence of almost unbroken R D see Fig. 13.10 (Jochem et al., 2007). The overall importance of the membrane is striking. Furthermore, the numbers of annual applications for bipolar plates (BPP) and the gas-diffusion layer (GDL) decrease after 2002, while the increase in membrane applications flattens out. This correlates with the equally lower number of fuel cell patents in the field of mobile applications. [Pg.367]

CNF is an industrially produced derivative of carbon formed by the decomposition and graphitization of rich organic carbon polymers (Fig. 14.3). The most common precursor is polyacrylonitrile (PAN), as it yields high tensile and compressive strength fibers that have high resistance to corrosion, creep and fatigue. For these reasons, the fibers are widely used in the automotive and aerospace industries [1], Carbon fiber is an important ingredient of carbon composite materials, which are used in fuel cell construction, particularly in gas-diffusion layers where the fibers are woven to form a type of carbon cloth. [Pg.360]

Nevertheless, a diffusion mechanism generally prevails and because it is the slowest step, it determines the regression rate. In evaporation, the mechanism is the conduction of heat from the surrounding atmosphere to the surface in ablation, it is the conduction of heat through the boundary layer in droplet burning, it is the rates at which the fuel diffuses to approach the oxidizer, etc. [Pg.335]

Figure 2.1 shows a schematic structure of the fuel cell membrane electrode assembly (MEA), including both anode and cathode sides. Each side includes a catalyst layer and a gas diffusion layer. Between the two sides is a proton exchange membrane (PEM) conducting protons from the anode to the cathode. [Pg.62]

Antoine et al. [28] inveshgated the gradient across the CL and found that the Pt utilization was dependent on the CL porosity. In a nonporous CL, catalyst utilization was increased through the preferential locahon of Pt close to the gas diffusion layer in a porous CL, catalyst utilization efficiency was increased through the preferential location of Pt close to the polymer electrolyte membrane. In PEM fuel cells, fhe CL has a porous structure, and better performance is expected if higher Pf loading is used af preferential locahons close to the membrane/catalyst layer interface. [Pg.71]

Figure 4.1 shows a schematic of a typical polymer electrolyte membrane fuel cell (PEMFC). A typical membrane electrode assembly (MEA) consists of a proton exchange membrane that is in contact with a cathode catalyst layer (CL) on one side and an anode CL on the other side they are sandwiched together between two diffusion layers (DLs). These layers are usually treated (coated) with a hydrophobic agent such as polytetrafluoroethylene (PTFE) in order to improve the water removal within the DL and the fuel cell. It is also common to have a catalyst-backing layer or microporous layer (MPL) between the CL and DL. Usually, bipolar plates with flow field (FF) channels are located on each side of the MFA in order to transport reactants to the... [Pg.192]

The MPL is normally formed with carbon black and hydrophobic particles (PTFE). The diffusion layer is usually made out of carbon fiber paper (CFP) or carbon cloth (CC) and is a vital component of the MEA and fuel cell because it provides the following functions and properties ... [Pg.193]

Another important parameter that has to be taken into account when choosing the appropriate diffusion layer is the overall cost of the material. In the last few years, a number of cost analysis studies have been performed in order to determine fuel cell system costs now and in the future, depending on the power output, size of the system, and number of xmits. Carlson et al. [1] reported that in 2005 the manufacturing costs of diffusion layers (for both anode and cathode sides) corresponded to 5% of the total cost for an 80 kW direct hydrogen fuel cell stack (assuming 500,000 units) used in the automotive sector. The total value for the DLs was US 18.40 m-, which included two carbon cloths (E-TEK GDL LT 1200-W) with 27 wt% P ILE, an MPL with PTFE, and Cabot carbon black. Capital, manufacturing, tooling, and labor costs were included in the total. [Pg.194]

In 2007, the same consulting company published another report in which the cost of the DLs had increased slightly to 6% of the overall cost of the stack, compared to the 5% previously estimated [2]. One issue with these analyses and predictions was that they were based on carbon cloth as the diffusion layer, but this material does not reflect what most of the fuel cell companies use (i.e., carbon fiber paper) [3]. [Pg.194]

In another report, James and Kalinoski [4] performed an estimation of the costs for a direct hydrogen fuel cell system used in automotive applications. The assumed system consisted of an 80 kW system with four fuel cell stacks, each with 93 active cells this represents around 400 MEAs (i.e., 800 DLs) per system. The study was performed assuming that the DL material used for both the anode and cathode sides would be carbon fiber paper with an MPL. In fact, the cost estimate was based on SGL Carbon prices for its DLs with an approximate CEP value of around US 12 m for 500,000 systems per year. Based on this report, the overall value of the DLs (with MPL) is around US 42.98 per kilowatt (for current technology and 1,000 systems per year) and 3.27 per kilowatt (for 2015 technology and 500,000 systems per year). Figure 4.2 shows the cost component distribution for this 80 kW fuel cell system. In conclusion, the diffusion layer materials used for fuel cells not only have to comply with all the technical requirements that different fuel cell systems require, but also have to be cost effective. [Pg.194]

For example, if fhe DL is used on the side of fhe cell where fhe fuel or oxidant is in gas phase, then this part can be referred to as gas diffusion layer (GDL). When bofh fhe CL and the DL are mentioned as one component, then the name "diffusion electrode" is commonly used. Because the DL is of a porous nature, it has also been called "diffusion medium" (DM) or "porous transporf layer" (PTL). Sometimes the DL is also referred to as fhe component formed by an MPL and a backing layer. The MPL has also been called the "water management layer" (WML) because one of its main purposes is to improve the water removal inside the fuel cell. In this chapter, we will refer to these components as MPL and DL because these names are widely used in the fuel cell indusfry. [Pg.196]

As discussed previously, a number of different materials have been considered as potential candidates to be used as diffusion layers in PEMFCs and direct liquid fuel cells (DLFCs). The two materials used the most so far in fuel cell research and products are carbon fiber papers and carbon cloths, also known as carbon woven fabrics. Both materials are made from carbon fibers. Although these materials have been quite popular for fuel cells, they have a number of drawbacks—particularly with respect to their design and model complexity—that have led to the study of other possible materials. The following sections discuss in detail the main materials that have been used as diffusion layers, providing an insight into how these materials are fabricated and how they affect fuel cell performance. [Pg.196]

List of Commercially Available Carbon Fiber Papers as Diffusion Layers in Fuel Cells... [Pg.198]

Along with CFPs, carbon cloths have also been widely used materials for diffusion layers in fuel cells. Figure 4.6 shows SEM pictures of typical carbon cloth materials used in fuel cells. The majority of these fabrics are made from PAN fibers that are twisted together in rolls. For details regarding how normal PAN fibers and carbon fibers are fabricated, please refer to Section 4.2.I.I. In this section, we will briefly discuss the fabrication process of carbon cloths. [Pg.207]

Table 4.2 shows the properties of carbon cloth materials that are commercially available and have been used as diffusion layers in fuel cells. [Pg.209]

Due to their high electrical and thermal conductivity, materials made out of metal have been considered for fuel cells, especially for components such as current collectors, flow field bipolar plates, and diffusion layers. Only a very small amount of work has been presented on the use of metal materials as diffusion layers in PEM and DLFCs because most of the research has been focused on using metal plates as bipolar plates [24] and current collectors. The diffusion layers have to be thin and porous and have high thermal and electrical conductivity. They also have to be strong enough to be able to support the catalyst layers and the membrane. In addition, the fibers of these metal materials cannot puncture the thin proton electrolyte membrane. Thus, any possible metal materials to be considered for use as DLs must have an advantage over other conventional materials. [Pg.209]

In electrochemical systems, metal meshes have been widely used as the backing layers for catalyst layers (or electrodes) [26-29] and as separators [30]. In fuel cells where an aqueous electrolyte is employed, metal screens or sheets have been used as the diffusion layers with catalyst layers coated on them [31]. In direct liquid fuel cells, such as the direct methanol fuel cell (DMFC), there has been research with metal meshes as DLs in order to replace the typical CFPs and CCs because they are considered unsuitable for the transport and release of carbon dioxide gas from the anode side of the cell [32]. [Pg.211]

Similar metal sheets have also been used as DLs in the cathode of PEMFCs. Wilkinson et al. [37,38] presented the idea of using fluid distribution layers made out of metal meshes with electrically conductive fillers inside the holes of the meshes. A very similar idea was also presented by Fiamada and Nakato [39]. Eosfeld and Eleven [40] presented another example of fuel cells that use metal meshes as diffusion layers along with metal FF plates. [Pg.211]

It is important to menhon that sintered metal meshes are widely used as the diffusion layers in unitized regenerahve polymer fuel cells (URECs) and... [Pg.213]

Aravamudhan, Rahman, and Bhansali. [70] developed a micro direct ethanol fuel cell with silicon diffusion layers. Each silicon substrate had a number of straight micropores or holes that were formed using microelec-tromechanical system (MEMS) fabrication techniques. The pores acted both as microcapillaries/wicking structures and as built-in fuel reservoirs. The capillary action of the microperforations pumps the fuel toward the reaction sites located at the CL. Again, the size and pattern of these perforations could be modified depending on the desired properties or parameters. Lee and Chuang [71] also used a silicon substrate and machined microperforations and microchannels on it in order to use it as the cathode diffusion layer and FF channel plate in a micro-PEMFC. [Pg.221]

Besides silicon, other materials have also been used in micro fuel cells. Cha et al. [79] made micro-FF channels on SU8 sheets—a photosensitive polymer that is flexible, easy to fabricate, thin, and cheaper than silicon wafers. On top of fhe flow channels, for both the anode and cathode, a paste of carbon black and PTFE is deposited in order to form the actual diffusion layers of the fuel cell. Mifrovski, Elliott, and Nuzzo [80] used a gas-permeable elastomer, such as poly(dimethylsiloxane) (PDMS), as a diffusion layer (with platinum electrodes embedded in it) for liquid-electrolyte-based micro-PEM fuel cells. [Pg.223]

Ofher diffusion layer approaches can also be found in the literature. Chen-Yang et al. [81] made DLs for PEMFCs out of carbon black and unsintered PTFE comprising PTFE powder resin in a colloidal dispersion. The mixture of fhese materials was then heated and compressed at temperature between 75 and 85°C under a low pressure (70-80 kg/cm ). After this, the DLs were obtained by heating the mixture once more at 130°C for around 2-3 hours. Evenfually, fhe amount of resin had a direct influence on determining the properties of fhe DL. The fuel cell performance of this novel DL was shown to be around a half of that for a CFP standard DL. Flowever, because the manufacturing process of these carbon black/PTFE DLs is inexpensive, they can still be considered as potential candidates. [Pg.223]

After the diffusion materials are fabricated, a number of treatments and coatings are still necessary in order to tailor the final properties for these materials based on the specific fuel cell application and the associated operating conditions. The following sections will explain in detail the different treatments that are normally used on diffusion layers for fuel cells. Brief examples showing how these treatments change the performance of the DLs will also be discussed. [Pg.227]

Ji and Kumar [107] presented an invention in which, after treatment with PTFE, the cathode diffusion layers are coated with a silicon solution in order to enhance the hydrophobic properties of the DFs. This silicon does not have to be coated over the whole surface of the DL, but could be coated in just certain areas, depending on the design of the cell, the location of fhe cell wifhin a stack, and the desired hydrophobic properties. It was demonstrated how a DL with the silicon coating improved the performance of a single fuel cell when operating at high relative humilities [107]. [Pg.229]

Tuber et al. [Ill] used a transparent fuel cell (at 30°C) to visualize both hydrophobic and hydrophilic diffusion layers. They discussed the idea of... [Pg.233]

Colbow, Zhang, and Wilkinson [128] showed that the performance of liquid feed fuel cells could be increased by oxidizing the carbon diffusion layer. The DL was electrochemically oxidized in acidic aqueous solution (impregnated in some cases with proton-conducting ionomer) prior to application of the electrocatalyst. [Pg.234]

To design the optimal diffusion layer for a specific fuel cell system, it is important to be able to measure and understand all the parameters and characteristics that have a direct influence on the performance of the diffusion layers. This section will discuss in detail some of the most important properties that affect the diffusion layers, such as thickness, hydrophobicity and hydrophilicity, porosity and permeability (for both gas and liquids), electrical and thermal conductivity, mechanical properties, durability, and flow... [Pg.248]

One crifical paramefer fhaf affecfs fhe fhickness of fhe diffusion layer is fhe compression force used in fhe fuel cell in order fo avoid any gas leaks and to assure good contact between all the components. However, this compressive force can deform the diffusion layer and hence affect the performance of the cell. More information regarding how the compression forces affect the diffusion layer is discussed in Section 4.4.5. Ideally, the material used as the DL should be able to resist this compression force or pressure without affecting most of its parameters. Figure 4.21 shows a schematic of the cell voltage (performance) at a given current density, resistance, and DL porosity as a function of the cell s compression. [Pg.250]

Issues with mass transport resistance, especially at higher current densities, represent an important hurdle that fuel cells need to overcome to achieve the required efficiencies and power densifies that different applications require. Diffusion layers represenf one of fhe major fuel cell components that have a direct impact on these mass transport issues thus, optimization of the DLs is required through the use of differenf experimental and characterization techniques. [Pg.255]

As stated earlier, CEP and CC are the most common materials used in the PEM and direct liquid fuel cell due fo fheir nature, it is critical to understand how their porosity, pore size distribution, and capillary flow (and pressures) affecf fhe cell s overall performance. In addition to these properties, pressure drop measurements between the inlet and outlet streams of fuel cells are widely used as an indication of the liquid and gas transport within different diffusion layers. In fhis section, we will discuss the main methods used to measure and determine these properties that play such an important role in the improvement of bofh gas and liquid transport mechanisms. [Pg.255]

However, this porosity takes into account all the open pores—even those that are not connected between each other, which are useless in fuel cell operation. Therefore, the effective porosity, which counts only the interconnected pores, is more critical when determining the optimal diffusion layer in a fuel cell. This porosity can be determined by using volume filtration techniques. For example, a porous sample is immersed in a liquid that does not enter inside the pores (e.g., mercury at low pressures) and then the total volume of the material can be determined. Next, the specimen is put inside a container of known volume that contains an inert gas, and the changed pressure is recorded. After this, a second evacuated chamber of known volume is connected to the system, and the new pressure is recorded. With these pressures and the ideal gas law, the volume of open pores and thus the effective porosity can be determined [195]. [Pg.256]


See other pages where Fuel diffusion layer is mentioned: [Pg.13]    [Pg.13]    [Pg.363]    [Pg.363]    [Pg.353]    [Pg.357]    [Pg.385]    [Pg.166]    [Pg.221]    [Pg.228]    [Pg.228]    [Pg.234]    [Pg.248]    [Pg.251]    [Pg.256]    [Pg.260]   
See also in sourсe #XX -- [ Pg.303 ]




SEARCH



Diffuse layer

Diffusion layer

Fuel cell gas diffusion layer

PEM fuel cell gas diffusion layer

© 2024 chempedia.info