Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Food production techniques

Reverse osmosis is used for desalination of seawater, treatment of recycle water in chemical plants and separation of industrial wastes. More recently the technique has been applied to concentration and dehydrogenation of food products such as milk and fruit juices. See ultrafiltralion. [Pg.344]

The development of precise and reproducible methods of sensory analysis is prerequisite to the determination of what causes flavor, or the study of flavor chemistry. Knowing what chemical compounds are responsible for flavor allows the development of analytical techniques using chemistry rather than human subjects to characterize flavor (38,39). Routine analysis in most food production for the quaUty control of flavor is rare (40). Once standards for each flavor quaUty have been synthesized or isolated, they can also be used to train people to do more rigorous descriptive analyses. [Pg.3]

In the early years of the chemical industry, use of biological agents centered on fermentation (qv) techniques for the production of food products, eg, vinegar (qv), cheeses (see Milk and milk products), beer (qv), and of simple organic compounds such as acetone (qv), ethanol (qv), and the butyl alcohols (qv). By the middle of the twentieth century, most simple organic chemicals were produced synthetically. Fermentation was used for food products and for more complex substances such as pharmaceuticals (qv) (see also Antibiotics). Moreover, supports were developed to immobilize enzymes for use in industrial processes such as the hydrolysis of starch (qv) (see Enzyme applications). [Pg.113]

The analysis of complex matrices, such as natural products, food products, environmental pollutants and fossil fuels, is today a very important area of separation science. The latest developments in chromatographic techniques have yielded highly efficient systems, used with specific detectors to obtain high selectivity and or sensitivity. [Pg.16]

GC using chiral columns coated with derivatized cyclodextrin is the analytical technique most frequently employed for the determination of the enantiomeric ratio of volatile compounds. Food products, as well as flavours and fragrances, are usually very complex matrices, so direct GC analysis of the enantiomeric ratio of certain components is usually difficult. Often, the components of interest are present in trace amounts and problems of peak overlap may occur. The literature reports many examples of the use of multidimensional gas chromatography with a combination of a non-chiral pre-column and a chiral analytical column for this type of analysis. [Pg.218]

On-line LC-GC has frequently been used as a clean-up technique for the analysis of trace levels of contaminants (pesticides, plasticizers, dyestuffs and toxic organic chemicals) in water and food products. Several different approaches have been proposed for the analysis of contaminants by on-line LC-GC. Since pesticide residues occur at low concentration in water, soil or food, extraction and concentration is needed before GC analysis is carried out. [Pg.238]

H. Casablanca, J.-B. Graff, P. Jame, C. Pemrcchietti and M. Chastr ette, Application of hyphenated techniques to the cl U omatogr aphic authentication of flavours in food products and perfumes , 7. High Resolut. Chromatogr. 18 279-285 (1995). [Pg.246]

Dietary fibre, which comprises all the non-digestible structural carbohydrates of plant cell walls and any associate lignin, provides a further example of a complex food-borne factor which cannot be classified as a nutrient, and which continues to generate debate over such issues as definition and analytical techniques. However, whatever the unresolved complexities, dietary fibre has a lengthy history and had proved itself eminently suitable as a component of functional food products long before the term was even coined. [Pg.38]

Immobilization is the technique of choice in many food industry processes and especially in beverage production. Many immobilization technologies have already been tested and some are applied in the production of beer, wine, vinegar, and other food products using a traditional approach with cultme adhesion (i.e., Acetobacter in vinegar production) or more modem approaches with entrapment of yeast biomass (i.e., sparkling wines, cheeses, and yogurts). [Pg.314]

Because of peak overlappings in the first- and second-derivative spectra, conventional spectrophotometry cannot be applied satisfactorily for quantitative analysis, and the interpretation cannot be resolved by the zero-crossing technique. A chemometric approach improves precision and predictability, e.g., by the application of classical least sqnares (CLS), principal component regression (PCR), partial least squares (PLS), and iterative target transformation factor analysis (ITTFA), appropriate interpretations were found from the direct and first- and second-derivative absorption spectra. When five colorant combinations of sixteen mixtures of colorants from commercial food products were evaluated, the results were compared by the application of different chemometric approaches. The ITTFA analysis offered better precision than CLS, PCR, and PLS, and calibrations based on first-derivative data provided some advantages for all four methods. ... [Pg.541]

The increased use of IV-methyl carbamate insecticides in agriculture demands the development of selective and sensitive analytical procedures to determine trace level residues of these compounds in crops and other food products. HPLC is the technique most widely used to circumvent heat sensitivity of these pesticides. However, HPLC with UV detection lacks the selectivity and sensitivity needed for their analysis. In the late 1970s and early 1980s, HPLC using post-column hydrolysis and derivatization was developed and refined with fluorescence detection to overcome these problems. The technique relies on the post-column hydrolysis of the carbamate moiety to methylamine with subsequent derivatization to a fluorescent isoindole product. This technique is currently the most widely used HPLC method for the determination of carbamates in water" and in fruits and vegetables." " ... [Pg.775]

Quality of food products and the ability to guarantee the quality of a food product is becoming increasingly important in a global economy where there are multiple sources for the food product. This need to measure, control and guarantee quality has resulted in an emphasis to develop more analytical techniques/sensors to measure a product for both external and internal quality. Consider quality evaluation of fresh fruits and vegetables. [Pg.471]

Low Resolution Nuclear Magnetic Resonance (LR-NMR) systems are routinely used for food quality assurance in laboratory settings [25]. NMR based techniques are standardized and approved by the American Oil Chemist s Society (AOCS) (AOCSd 16b-93, AOCS AK 4-95), the International Union of Pure and Applied Chemistry (IUPAC) (solid fat content, IUPAC Norm 2.150) and the International Standards Organization (ISO) (oil seeds, ISO Dis/10565, ISO CD 10632). In addition to these standardized tests, low resolution NMR is used to measure moisture content, oil content and the state (solid or liquid) of fats in food. Table 4.7.1 summarizes common food products that are analyzed by low-resolution NMR for component concentration. [Pg.480]

To ensure the safety of food products, representative samples must be inspected so that foodborne bacteria can be identified.15,18,19 Bacteria producing heat-stable enterotoxins, such as Staphylococcus aureus, may be identified by biochemical and serological techniques.20,21 Molecular methods are now widely used for the identification of many pathogenic foodborne bacteria,15,22,23 In addition bacteria used as starter cultures for cheese, yogurt, other fermented foods and beverages, and probiotic dietary supplements may be identified for quality assurance.22,24,25... [Pg.2]

The most well known application of PHB and poly(3HB-co-3HV) is as substitute for conventional, non-biodegradable plastics used for packaging purposes and derived products [21, 115, 116]. Single-use bottles for shampoos, cosmetics and biodegradable motor-oil have been manufactured from these biopolyesters by common molding techniques. Containers and cups for food products were developed similarly, and bags have been produced from blown films of the material. [Pg.272]


See other pages where Food production techniques is mentioned: [Pg.486]    [Pg.486]    [Pg.374]    [Pg.432]    [Pg.201]    [Pg.394]    [Pg.24]    [Pg.304]    [Pg.65]    [Pg.359]    [Pg.269]    [Pg.185]    [Pg.386]    [Pg.201]    [Pg.444]    [Pg.174]    [Pg.175]    [Pg.709]    [Pg.827]    [Pg.172]    [Pg.471]    [Pg.255]    [Pg.9]    [Pg.16]    [Pg.81]    [Pg.382]    [Pg.332]    [Pg.95]    [Pg.33]    [Pg.56]    [Pg.174]    [Pg.181]    [Pg.185]    [Pg.835]    [Pg.189]   


SEARCH



Food product

Food production

Food production techniques development

Techniques product

Techniques production

© 2024 chempedia.info