Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Food production techniques development

The most well known application of PHB and poly(3HB-co-3HV) is as substitute for conventional, non-biodegradable plastics used for packaging purposes and derived products [21, 115, 116]. Single-use bottles for shampoos, cosmetics and biodegradable motor-oil have been manufactured from these biopolyesters by common molding techniques. Containers and cups for food products were developed similarly, and bags have been produced from blown films of the material. [Pg.272]

The development of precise and reproducible methods of sensory analysis is prerequisite to the determination of what causes flavor, or the study of flavor chemistry. Knowing what chemical compounds are responsible for flavor allows the development of analytical techniques using chemistry rather than human subjects to characterize flavor (38,39). Routine analysis in most food production for the quaUty control of flavor is rare (40). Once standards for each flavor quaUty have been synthesized or isolated, they can also be used to train people to do more rigorous descriptive analyses. [Pg.3]

In the early years of the chemical industry, use of biological agents centered on fermentation (qv) techniques for the production of food products, eg, vinegar (qv), cheeses (see Milk and milk products), beer (qv), and of simple organic compounds such as acetone (qv), ethanol (qv), and the butyl alcohols (qv). By the middle of the twentieth century, most simple organic chemicals were produced synthetically. Fermentation was used for food products and for more complex substances such as pharmaceuticals (qv) (see also Antibiotics). Moreover, supports were developed to immobilize enzymes for use in industrial processes such as the hydrolysis of starch (qv) (see Enzyme applications). [Pg.113]

The analysis of complex matrices, such as natural products, food products, environmental pollutants and fossil fuels, is today a very important area of separation science. The latest developments in chromatographic techniques have yielded highly efficient systems, used with specific detectors to obtain high selectivity and or sensitivity. [Pg.16]

Information on dioxins in the environment was acquired rapidly by using some simple, but safe and reliable techniques developed for chlorinated pesticdes. Based on results of these tests, one should be able to predict whether routes of entry into aquatic and terrestrial food chains are significant, the rate and products of decomposition mechanism, and their general longevity in the environment. [Pg.110]

The increased use of IV-methyl carbamate insecticides in agriculture demands the development of selective and sensitive analytical procedures to determine trace level residues of these compounds in crops and other food products. HPLC is the technique most widely used to circumvent heat sensitivity of these pesticides. However, HPLC with UV detection lacks the selectivity and sensitivity needed for their analysis. In the late 1970s and early 1980s, HPLC using post-column hydrolysis and derivatization was developed and refined with fluorescence detection to overcome these problems. The technique relies on the post-column hydrolysis of the carbamate moiety to methylamine with subsequent derivatization to a fluorescent isoindole product. This technique is currently the most widely used HPLC method for the determination of carbamates in water" and in fruits and vegetables." " ... [Pg.775]

Quality of food products and the ability to guarantee the quality of a food product is becoming increasingly important in a global economy where there are multiple sources for the food product. This need to measure, control and guarantee quality has resulted in an emphasis to develop more analytical techniques/sensors to measure a product for both external and internal quality. Consider quality evaluation of fresh fruits and vegetables. [Pg.471]

Rancidity measurements are taken by determining the concentration of either the intermediate compounds, or the more stable end products. Peroxide values (PV), thiobarbituric acid (TBA) test, fatty acid analysis, GC volatile analysis, active oxygen method (AOM), and sensory analysis are just some of the methods currently used for this purpose. Peroxide values and TBA tests are two very common rancidity tests however, the actual point of rancidity is discretionary. Determinations based on intermediate compounds (PV) are limited because the same value can represent two different points on the rancidity curve, thus making interpretations difficult. For example, a low PV can represent a sample just starting to become rancid, as well as a sample that has developed an extreme rancid characteristic. The TBA test has similar limitations, in that TBA values are typically quadratic with increasing oxidation. Due to the stability of some of the end-products, headspace GC is a fast and reliable method for oxidation measurement. Headspace techniques include static, dynamic and solid-phase microextraction (SPME) methods. Hexanal, which is the end-product formed from the oxidation of Q-6 unsaturated fatty acids (linoleate), is often found to be a major compound in the volatile profile of food products, and is often chosen as an indicator of oxidation in meals, especially during the early oxidative changes (Shahidi, 1994). [Pg.535]

Quality attributes of food emulsions, such as appearance, stability, and rheology, are strongly influenced by the size of the droplets that they contain (Friberg and Larsson, 1997 McClements, 1999). For example, the creaming stability of an emulsion decreases as droplet size increases. Analytical techniques that provide quantitative information about droplet size are therefore required to aid in the development and production of high-quality emulsion-based food products. A variety of analytical techniques have been developed to measure droplet size, e.g., laser diffraction, electrical pulse counting, sedimentation techniques, and ultrasonic spectrometry (McClements, 1999). These techniques are used for fundamental research, product development, and quality assurance. This unit focuses on the two most commonly used techniques in the food industry, laser diffraction and electrical pulse counting. [Pg.581]

One major consequence of the Ml project was the development of a modified filament stretching instrument by Sridhar. In this device, the test sample is held horizontally between two Teflon discs and pulled equally at both ends at a programmable exponential rate such that a constant strain rate is achieved and the stress growth at a constant stretch rate is obtained (40). It appears though that the test sample has to adhere to the plates as the technique does not use aids to clamp samples. Consequently, it is not clear if the technique can be applied to products that are non-sticky or exhibit slip, which could be limiting factors for testing food products. [Pg.293]

An application of ultrasound that is becoming increasingly popular in the food industry is the determination of creaming and sedimentation profiles in emulsions and suspensions (Basaran et al., 1998). Acoustic techniques can also assess nondestructively the texture of aerated food products such as crackers and wafers. Air cells, which are critical to consumer appreciation of baked product quality, are readily probed due to their inherent compressibility (Elmehdi et al., 2003). Kulmyrzaev et al. (2000) developed an ultrasonic reflectance spectrometer to relate ultrasonic reflectance spectra to bubble characteristics of aerated foods. Experiments were carried out using foams with different bubble concentration and the results showed that ultrasonic reflectance spectrometry is sensitive to changes in bubble size and concentration of aerated foods. [Pg.223]


See other pages where Food production techniques development is mentioned: [Pg.486]    [Pg.1148]    [Pg.177]    [Pg.374]    [Pg.65]    [Pg.201]    [Pg.596]    [Pg.649]    [Pg.709]    [Pg.827]    [Pg.9]    [Pg.174]    [Pg.185]    [Pg.383]    [Pg.189]    [Pg.115]    [Pg.215]    [Pg.8]    [Pg.13]    [Pg.212]    [Pg.4]    [Pg.653]    [Pg.142]    [Pg.104]    [Pg.210]    [Pg.245]    [Pg.478]    [Pg.653]    [Pg.87]    [Pg.50]    [Pg.421]    [Pg.129]    [Pg.158]    [Pg.246]    [Pg.233]   
See also in sourсe #XX -- [ Pg.486 ]




SEARCH



Food product

Food production

Food production techniques

Product development

Techniques product

Techniques production

© 2024 chempedia.info