Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fluorine-arsenic

The use of plant extracts for insect control dates into antiquity the use of Paris green as an insecticide for control of the Colorado potato beetle in 1867 probably marks the beginning of the modern era of chemical control of injurious insects. The development of lead arsenate followed later in the nineteenth century for gypsy moth control. The commercial production of nicotine insecticides, the production of calcium arsenate at the time of the first world war, and the use of fluorine, arsenical, and cyanide compounds, as well as other inorganic chemicals for insect control, were important steps in pest control. These chemicals were applied largely by dilute high pressure sprays or dusts. [Pg.218]

When heated with chlorine, bromine or iodine vapors arsenic forms the corresponding trihalides however, with fluorine, arsenic pentafluoride, AsFs is produced. With sulfur it forms mixtures of sulfides, AS2S3, AS2S2 and AS2S5 in vitreous forms and varying proportions depending on the conditions of reactions. [Pg.63]

After cooling, the flask is shaken thoroughly and disassembled, and the inner surfaces are cai-efully rinsed. The analysis is then performed on the resulting solution. This procedure has been applied to the determination of halogens, sulfur, phosphorus, fluorine, arsenic, boron, carbon, and various metals in organic compounds. [Pg.1048]

Other elements to be avoided are oxygen, fluorine, arsenic, selenium, bromine, iodine, tin, and lead. [Pg.282]

A complete set of trihalides for arsenic, antimony and bismuth can be prepared by the direct combination of the elements although other methods of preparation can sometimes be used. The vigour of the direct combination reaction for a given metal decreases from fluorine to iodine (except in the case of bismuth which does not react readily with fluorine) and for a given halogen, from arsenic to bismuth. [Pg.213]

Bromine has a lower electron affinity and electrode potential than chlorine but is still a very reactive element. It combines violently with alkali metals and reacts spontaneously with phosphorus, arsenic and antimony. When heated it reacts with many other elements, including gold, but it does not attack platinum, and silver forms a protective film of silver bromide. Because of the strong oxidising properties, bromine, like fluorine and chlorine, tends to form compounds with the electropositive element in a high oxidation state. [Pg.322]

Hydrogen fluoride Acetic anhydride, 2-aminoethanol, ammonia, arsenic trioxide, chlorosulfonic acid, ethylenediamine, ethyleneimine, fluorine, HgO, oleum, phosphorus trioxide, propylene oxide, sodium, sulfuric acid, vinyl acetate... [Pg.1208]

Arsenic pentafluoride can be prepared by reaction of fluorine and arsenic trifluoride or arsenic from the reaction of NF O and As (16) from the reaction of Ca(FS02)2 and H AsO (17) or by reaction of alkaH metal or alkaline-earth metal fluorides or fluorosulfonates with H AsO or H2ASO2F (18). [Pg.153]

Rotenoids. The use of rotenone-bearing roots as insecticides in the United States was developed as a result of federal laws against residues of lead, arsenic, and fluorine upon edible produce. Rotenone [83-79-4] (5) is harmless to plants, highly toxic to many insects, and relatively innocuous to... [Pg.269]

Cooled dust-laden gas is dedusted in an electrostatic precipitator and sent to the cleaning unit to remove impurities such as arsenic, fluorine, and chlorine before being sent on to the sulfuric acid production plant. [Pg.38]

Other salts include lead arsenates and lead arsenites (see Insect control technology), lead chromates and lead sihcochromates (see Pigments), lead cyanide (see Cyanides), lead 2-ethyIhexanoate (see Driers and metallic soaps), and lead fluoroborate (see Fluorine compounds, inorganic). [Pg.73]

Mineral Feed. Mineral feed supplements for domestic animals and fowl usually contain a pure form of pulverized limestone. In fact, some state laws require the supplement to be at least 35% available calcium. Other sources of calcium are bone meal and dicalcium phosphate. Use as mineral feed has been a steadily growing market for limestone. The material is ground to 90% minus 0.15 mm (100 mesh) or 80% minus 0.9074 mm (200 mesh), is low in silica, and has strict tolerances on arsenic and fluorine (see Feeds and feed additives). [Pg.177]

Under unusual circumstances, toxicity may arise from ingestion of excess amounts of minerals. This is uncommon except in the cases of fluorine, molybdenum, selenium, copper, iron, vanadium, and arsenic. Toxicosis may also result from exposure to industrial compounds containing various chemical forms of some of the minerals. Aspects of toxicity of essential elements have been pubhshed (161). [Pg.388]

Uranium hexafluoride [7783-81-5], UF, is an extremely corrosive, colorless, crystalline soHd, which sublimes with ease at room temperature and atmospheric pressure. The complex can be obtained by multiple routes, ie, fluorination of UF [10049-14-6] with F2, oxidation of UF with O2, or fluorination of UO [1344-58-7] by F2. The hexafluoride is monomeric in nature having an octahedral geometry. UF is soluble in H2O, CCl and other chlorinated hydrocarbons, is insoluble in CS2, and decomposes in alcohols and ethers. The importance of UF in isotopic enrichment and the subsequent apphcations of uranium metal cannot be overstated. The U.S. government has approximately 500,000 t of UF stockpiled for enrichment or quick conversion into nuclear weapons had the need arisen (57). With the change in pohtical tides and the downsizing of the nation s nuclear arsenal, debates over releasing the stockpiles for use in the production of fuel for civiUan nuclear reactors continue. [Pg.332]

The principal constituents of the paniculate matter are lead/zinc and iron oxides, but oxides of metals such as arsenic, antimony, cadmium, copper, and mercury are also present, along with metallic sulfates. Dust from raw materials handling contains metals, mainly in sulfidic form, although chlorides, fluorides, and metals in other chemical forms may be present. Off-gases contain fine dust panicles and volatile impurities such as arsenic, fluorine, and mercury. [Pg.132]

Trimethylarsine gives a 98% yield of trimethylarsine difluoride when treated with xenon difluoride [102] in fluorotrichloromelhane. and tnsfpentafluorophen-yl)arsine gives a 94% yield of tris(pentafluornphenyl)arsme difluoride after reaction with dilute fluorine in fluorotnchloromethane at 0 C [106] Other trivalent arsenic compounds have also been fluorinated with xenon difluoride [103] In addition, arsines have been oxidatively fluorinated by iodine pentafluoride [107] or electrochemically in 26-34% yield [108]... [Pg.46]

Acetylated aniline 21 was reacted under Skraup/Doebner-von Miller conditions in the presence of an arsenic salt to yield quinoline 22 with concurrent displacement of fluorine. ... [Pg.490]

Fluor-, of or combined with fluorine, fluoro-, fluo-, fluoride of (see instances following),. ammonium, n. ammonium fluoride, -an-thenchinon, n. fluoranthenequinone. -anti-mon, n. antimony fluoride, -arson, n. arsenic fluoride, -baryum, n. barium fluoride, -benzol, n. fluorobensene, fluobenaene. -bor, n. boron fluoride. -borsMure, /. fluo-boric acid. -brom, n. bromine fluoride, -chrom, n. chromium fluoride, -eisen, n. iron fluoride. [Pg.160]

Acetylene works Acrylates works Aldehyde works Aluminum works Amines works Ammonia works Anhydride works Arsenic works Asbestos works Benzene works Beryllium works Bisulfate works Bromine works Cadmium works Carbon disulfide works Carbonyl works Caustic soda works Cement works Ceramic works Chemical fertilizer works Chlorine works Chromium works Copper works Di-isocyanate works Electricity works Fiber works Fluorine works Gas liquor works Gas and coke works Hydrochloric acid works Hydrofluoric acid works Hydrogen cyanide works Incineration works Iron works and steel works... [Pg.755]

The magnetic criterion is particularly valuable because it provides a basis for differentiating sharply between essentially ionic and essentially electron-pair bonds Experimental data have as yet been obtained for only a few of the interesting compounds, but these indicate that oxides and fluorides of most metals are ionic. Electron-pair bonds are formed by most of the transition elements with sulfur, selenium, tellurium, phosphorus, arsenic and antimony, as in the sulfide minerals (pyrite, molybdenite, skutterudite, etc.). The halogens other than fluorine form electron-pair bonds with metals of the palladium and platinum groups and sometimes, but not always, with iron-group metals. [Pg.313]

C09-0045. Give the group number and the number of valence electrons for the following elements (a) aluminum (b) arsenic (c) fluorine and (d) tin. [Pg.644]

Fluorination of ClsP NMe-BCls (Section 2) by arsenic trifluoride results in the formation the well-characterized dimeric phosphazene (23) ... [Pg.203]

Gonska H, Griepink B, Colombo A, Muntau H (1984) The Certification of the Contents of Arsenic, Cadmium, Chromium, Cobalt, Fluorine, Manganese, Mercury, Nickel, Lead and Zinc in a Coal BCR No. 40. European Commission Report EUR 9473 EN, Community Bureau of Reference, Brussels,... [Pg.44]

Last, but not least, there is to be mentioned, that in some cases a direct transformation of dichlorophosphates (see section 3.4.) into difluorophosphates by fluorination with elementary fluorine (In(P02p2)3, F (P02F2)3 40)) or with arsenic trifluoride at elevated temperature is possible 41). ... [Pg.60]

Tin hold the record with 10 stable isotopes. There are 19 so-called "pure elements" of which there is only one isotope. These anisotopic elements are beryllium, fluorine, sodium, aluminum, phosphorus, scandium, manganese, cobalt, arsenic, yttrium, niobium, rhodium, iodine, cesium, praseodymium, terbium, holmium, thulium, gold, and bismuth. [Pg.96]

Arsenic trioxide reacts violently and nitrogen oxide ignites in excess fluorine. Bubbles of sulfur dioxide explode separately on contacting fluorine, while addition of the latter to sulfur dioxide causes an explosion at a certain concentration [1], Reaction of fluorine with dinitrogen tetraoxide usually causes ignition [2], Interaction with carbon monoxide may be explosive. Anhydrous silica incandesces in the gas, and interaction with liquid fluorine at — 80°C is explosive [3,4], Boron trioxide also incandesces in the gas [3],... [Pg.1518]


See other pages where Fluorine-arsenic is mentioned: [Pg.16]    [Pg.197]    [Pg.200]    [Pg.5599]    [Pg.342]    [Pg.16]    [Pg.197]    [Pg.200]    [Pg.5599]    [Pg.342]    [Pg.42]    [Pg.878]    [Pg.150]    [Pg.153]    [Pg.153]    [Pg.153]    [Pg.224]    [Pg.306]    [Pg.95]    [Pg.168]    [Pg.339]    [Pg.552]    [Pg.74]    [Pg.738]    [Pg.118]    [Pg.154]    [Pg.49]    [Pg.218]    [Pg.1517]   
See also in sourсe #XX -- [ Pg.12 ]




SEARCH



Arsenic fluoride as fluorinating agent

Arsenic-fluorine electrolytes

© 2024 chempedia.info