Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Flame resistant

Flame emissivity Flame ionization Flameproofing cotton Flame resistance Flame-resistant fibers Flame retardancy Flame retardant... [Pg.404]

There have been reviews of flammabihty (63—67), methods that can be used to enhance the flame resistance of acryhc and modacryhc fibers (68), and the mechanism of fiame-retardant additives (69). [Pg.284]

Electrically Conducting Fibers. FlectricaHy conducting fibers are useful in blends with fibers of other types to achieve antistatic properties in apparel fabrics and carpets. The process developed by Nippon Sanmo Dyeing Co., for example, is reportedly used by Asahi in Casbmilon 2.2 dtex (2 den) staple fibers. Courtaulds claims a flame-resistant electrically conductive fiber produced by reaction with guanadine and treatment with copper sulfide (97). [Pg.285]

Molybdenum Oxides. Molybdenum was one of the first elements used to retard the flames of ceUulosics (2). Mote recently it has been used to impart flame resistance and smoke suppression to plastics (26). Molybdic oxide, ammonium octamolybdate, and zinc molybdate ate the most widely used molybdenum flame retardants. Properties ate given in Table 5. These materials ate recommended almost exclusively for poly(vinyl chloride), its alloys, and unsaturated polyesters (qv). [Pg.458]

Poly(vinyl chloride). PVC is a hard, brittle polymer that is self-extinguishing. In order to make PVC useful and more pHable, plasticizers (qv) are added. More often than not the plasticizers are flammable and make the formulation less flame resistant. Flammability increases as the plasticizer is increased and the relative amount of chlorine decreased, as shown in Table 7. The flame resistance of the poly(vinyl chloride) can be increased by the addition of an inorganic flame-retardant synergist. [Pg.459]

Antimony Oxide. The effect of antimony trioxide on the oxygen index of flexible poly(vinyl chloride) containing from 20 to 50 parts of plasticizer is shown in Figure 2. The flame resistance as measured by the oxygen index increases with the addition of antimony oxide until the oxygen index appears to reach a maximum at about 8 parts of Sb202. Further addition of antimony oxide does not have any increased beneficial effect. [Pg.459]

Zinc Borate. Zinc borate is also effective in enhancing the flame-inhibiting powers of chlorine. Although zinc borate increases flame resistance, it is not as effective as antimony oxide, as is illustrated in Figure 3. However, zinc borate can be used in combination with antimony oxide to obtain equivalent and in some instances enhanced effects over what can be obtained using either of the two synergists alone (Table 9). [Pg.460]

Molybdenum Oxide. Molybdenum compounds incorporated into flexible PVC not only increase flame resistance, but also decrease smoke evolution. In Table 10 the effect of molybdenum oxide on the oxygen index of a flexible PVC containing 50 parts of a plasticizer is compared with antimony oxide. Antimony oxide is the superior synergist for flame retardancy but has Httle or no effect on smoke evolution. However, combinations of molybdenum oxide and antimony oxide may be used to reduce the total inorganic flame-retardant additive package, and obtain improved flame resistance and reduced smoke. [Pg.460]

Unsaturated Polyesters. There are two approaches used to provide flame retardancy to unsaturated polyesters. These materials can be made flame resistant by incorporating halogen when made, or by adding some organic halogen compound when cured. In either case a synergist is needed. The second approach involves the addition of a hydrated filler. At least an equal amount of filler is used. [Pg.461]

Olefin Polymers. The flame resistance of polyethylene can be increased by the addition of either a halogen synergist system or hydrated fillers. Similar flame-retarder packages are used for polypropylene (see Olefin polymers). Typical formulations of the halogen synergist type are shown in Table 15 the fiUer-type formulations are in Table 16. [Pg.462]

The first known fire-retardant process found durable to laundering was developed in 1912 (4). A modification of an earlier process (5), this finish was based on the formation of a tin(IV) oxide [18282-10-5] deposit. Although the fabric resulting from treatment was flame resistant, afterglow was reputed to be a serious problem, resulting in the complete combustion of the treated material through smoldering. [Pg.485]

Another related term is smolder resistance. Smolder resistance implies resistance to ignition by a smoldering source, such as aUt cigarette, placed on the surface of a fabric or in the crevice formed between two butting fabrics. Smolder resistance does not necessarily imply flame resistance, although the material in question may well be flame resistant. A fabric can be smolder resistant and not flame resistant, or vice versa. [Pg.485]

The weight and constmction of the fabric affect its burning rate and ease of ignition. Lightweight, loose-weave fabrics bum much faster than heavier weight fabrics therefore, a higher weight add-on of fire retardant is needed to impart adequate flame resistance. [Pg.485]

Dehydration or Chemical Theory. In the dehydration or chemical theory, catalytic dehydration of ceUulose occurs. The decomposition path of ceUulose is altered so that flammable tars and gases are reduced and the amount of char is increased ie, upon combustion, ceUulose produces mainly carbon and water, rather than carbon dioxide and water. Because of catalytic dehydration, most fire-resistant cottons decompose at lower temperatures than do untreated cottons, eg, flame-resistant cottons decompose at 275—325°C compared with about 375°C for untreated cotton. Phosphoric acid and sulfuric acid [8014-95-7] are good examples of dehydrating agents that can act as efficient flame retardants (15—17). [Pg.485]

Nondurable Finishes. Flame-retardant finishes that are not durable to launderiag and bleaching are, ia general, relatively iaexpensive and efficient (23). In some cases, a mixture of two or more salts is more effective than either of the components alone. For example, an add-on of 60% borax (sodium tetraborate) is required to prevent fabric from burning, and boric acid is iaeffective as a flame retardant even at levels equal to the weight of the fabric. However, a mixture of seven parts borax and three parts boric acid imparts flame resistance to a fabric with as Utde as 6.5% add-on. [Pg.486]

The Fire Tests for Flame Resistant Textiles and Films, issued by the National Fire Protection Association (NFPA) ia 1989, is the method most used by iadustrial fire-retardant finishers (ca 1993) (50). It has been approved by the American National Standards Institute. [Pg.487]

Mesylated and Tosylated Celluloses. It has been estabUshed that the flame resistance of ceUulose (qv) is improved by oxidation of —CH2OH groups to —COOH (58—60). To correct some of the shortcomings of this treatment, mesyl or tosyl ceUulose was prepared and then the mesyl (CH2SO2) or tosyl (CH2CgH4S02) group was replaced with bromine or iodine (58—60) ... [Pg.487]

This treatment produced a fabric with durable flame resistance and good strength retention, but an undesirable afterglow this was eliminated by phosphorylation with diethyl chlorophosphate [814-49-3]. [Pg.487]

Urea—Phosphate Type. Phosphoric acid imparts flame resistance to ceUulose (16,17), but acid degradation accompanies this process. This degradation can be minimized by iacorporation of urea [57-13-6]. Ph osph oryl a ting agents for ceUulose iaclude ammonium phosphate [7783-28-0] urea—phosphoric acid, phosphoms trichloride [7719-12-2] and oxychloride [10025-87-3] monophenyl phosphate [701-64-4] phosphoms pentoxide [1314-56-3] and the chlorides of partiaUy esterified phosphoric acids (see Cellulose esters, inorganic). [Pg.487]

Phosphorylated cottons are flame resistant ia the form of the free acid or the ammonium salt. Siace these fabrics have ion-exchange properties, conversion to the sodium salt takes place readily during laundering if basic tap water is used. However, flame resistance can be restored if the fabric is treated with either acetic acid [1563-80-8] or ammonium hydroxide [1336-21 -6] after washing. [Pg.487]

Phosphonomethylated Ethers. A phosphoms-containing ether of ceUulose can be prepared by the reaction of cotton ceUulose with chioromethylphosphonic acid [2565-58-4] ia the presence of sodium hydroxide [1310-73-2] by the pad-dry-cure technique (62). Phosphoms contents of between 0.2 and 4.0% are obtained. This finish is durable but has high ion-exchange properties and is flame resistant only as the ammonium salt. DurabUity on medium weight fabrics is obtained with chi oromethylph osph onic diamide. This finish has never penetrated the flame retardant market (63). [Pg.487]

Dialkylphosphonopropionamides. CeUulosic derivatives that closely resemble those based on the dialkylphosphonopropionamides have been prepared (71). The fabric was treated with AJ-hydrox raethylhaloacetamides (chloro, bromo, or iodo) in DME solution by a pad-dry-cure technique with a 2inc nitrate [10196-18-6] catalyst. It was then allowed to react in solution with trimethyl phosphite [121 -45-9] at about 140—150°C the reaction rates decreased in the order iodo > bromo > chloro. With phosphoms contents above 1.5%, good flame resistance, durable to laundering, was obtained without noticeable loss in fabric strength. [Pg.488]

The THPOH—NH process was used extensively for children s sleepwear in the early 1970s. However, the advent of the Tris problem on polyester led to a sharp decline in commercial production of chemically finished children s flame-resistant cotton sleepwear. [Pg.489]

As previously noted, the APO system leads to fabrics which combine flame resistance and durable press properties however, the toxicity of the aziridinyl system precludes its use in modem textile finishing. [Pg.490]

Flame-Retardant Treatments For Wool. Although wool is regarded as a naturally flame-resistant fiber, for certain appHcations, such as use in aircraft, it is necessary to meet more stringent requirements. The Zirpro process, developed for this purpose (122,123), is based on the exhaustion of negatively charged zirconium and titanium complexes on wool fiber under acidic conditions. Specific agents used for this purpose are potassium hexafluoro zirconate [16923-95-8] [16923-95-8] K ZrF, and potassium hexafluoro titanate [16919-27-0], K TiF. Various modifications of this process have been... [Pg.490]

Considerable effort is being made (ca 1993) to develop satisfactory flame retardants for blended fabrics. It has been feasible for a number of years to produce flame-resistant blended fabrics provided that they contain about 65% or more ceUulosic fibers. It appears probable that blends of even greater synthetic fiber content can be effectively made flame resistant. An alternative approach may be to first produce flame-resistant thermoplastic fibers by altering the chemical stmcture of the polymers. These flame-resistant fibers could then be blended with cotton or rayon and the blend treated with an appropriate flame retardant for the ceUulose, thereby producing a flame-resistant fabric. Several noteworthy finishes have been reported since the early 1970s. [Pg.491]

THPOH—Ammonia—Tris Finish. By far the most effective finish for polyester—cotton textiles was a system based on the THPOH—NH treatment of the cotton component either foUowed or preceded by the appUcation of Tris finish to the polyester component. This combined treatment appeared to be effective on almost any polyester—cotton blend. A large amount of fabric treated in this way was sold throughout the United States and much of the rest of the world. Shortly after the introduction of Tris finishing, Tris was found to be a carcinogen. Most of the Tris treated production was in children s sleepwear, and this created a situation in which almost aU chemical fire-retardant-treated textiles were unfairly condemned as dangerous. Manufacturers mshed to replace chemically treated textiles with products produced from inherently flame-resistant fibers. Nowhere was the impact more severe than in the children s sleepwear market. New, safer materials have been introduced to replace Tris. Thus far none has been as completely effective. [Pg.491]


See other pages where Flame resistant is mentioned: [Pg.23]    [Pg.175]    [Pg.176]    [Pg.277]    [Pg.283]    [Pg.283]    [Pg.284]    [Pg.284]    [Pg.485]    [Pg.485]    [Pg.485]    [Pg.485]    [Pg.485]    [Pg.486]    [Pg.486]    [Pg.487]    [Pg.487]    [Pg.487]    [Pg.488]    [Pg.489]    [Pg.490]    [Pg.490]    [Pg.491]    [Pg.491]   
See also in sourсe #XX -- [ Pg.110 ]




SEARCH



Flame resistance

© 2024 chempedia.info