Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Failure mode and effect

Methods for performing hazard analysis and risk assessment include safety review, checkhsts, Dow Fire and Explosion Index, what-if analysis, hazard and operabihty analysis (HAZOP), failure modes and effects analysis (FMEA), fault tree analysis, and event tree analysis. Other methods are also available, but those given are used most often. [Pg.470]

Failure Mode and Effects Analysis. The system design activity usually emphasizes the attainment of performance objectives in a timely and cost-efficient fashion. The failure mode and effects analysis (FMEA) procedure considers the system from a failure point of view to determine how the product might fail. The terms design failure mode and effects analysis (DFMEA) and failure mode effects and criticaUty analysis (EMECA) also are used. This EMEA technique is used to identify and eliminate potential failure modes early in the design cycle, and its success is well documented (3,4). [Pg.6]

Process Hazards Analysis. Analysis of processes for unrecogni2ed or inadequately controUed ha2ards (see Hazard analysis and risk assessment) is required by OSHA (36). The principal methods of analysis, in an approximate ascending order of intensity, are what-if checklist failure modes and effects ha2ard and operabiHty (HAZOP) and fault-tree analysis. Other complementary methods include human error prediction and cost/benefit analysis. The HAZOP method is the most popular as of 1995 because it can be used to identify ha2ards, pinpoint their causes and consequences, and disclose the need for protective systems. Fault-tree analysis is the method to be used if a quantitative evaluation of operational safety is needed to justify the implementation of process improvements. [Pg.102]

The cost of performing the hazard identification step depends on the size of the problem and the specific techniques used. Techniques such as brainstorming, what-if analyses, or checklists tend to be less expensive than other more structured methods. Hazard and operability (HAZOP) analyses and failure modes and effects analyses (FMEAs) involve many people and tend to be more expensive. But, you can have greater confidence in the exhaustiveness of HAZOP and FMEA techniques—their rigorous approach helps ensure completeness. However, no technique can guarantee that all hazards or potential accidents have been identified. Figure 8 is an example of the hazards identified in a HAZOP study. Hazard identification can require from 10% to 25% of the total effort in a QRA study. [Pg.32]

Chrysler Corporation, Ford Motors, General Motors Corporation 1995 Potential Failure Mode and Effects Analysis (FMEA) - Reference Manual, 2nd Edition. [Pg.384]

We previously encountered failure modes and effects (FMEA) and failure modes effects and criticality analysis (FMECA) as qualitative methods for accident analysis. These tabular methods for reliability analysis may be made quantitative by associating failure rates with the parts in a systems model to estimate the system reliability. FMEA/FMECA may be applied in design or operational phases (ANSI/IEEE Std 352-1975, MIL-STD-1543 and MIL-STD-1629A). Typical headings in the F.Mld. A identify the system and component under analysis, failure modes, the ef fect i>f failure, an estimale of how critical apart is, the estimated probability of the failure, mitigaturs and IHissihiy die support systems. The style and contents of a FMEA are flexible and depend upon the. ilitcLiives of the analyst. [Pg.99]

A risk assessment analyses systems at two levels. The first level defines the functions the system must perform to respond successfully to an accident. The second level identifies the hardware for the systems use. The hardware identification (in the top event statement) describes minimum system operability and system boundaries (interfaces). Experience shows that the interfaces between a frontline system and its support systems are important to the system cs aluaiion and require a formal search to document the interactions. Such is facilitated by a failure modes and effect analysis (FMEA). Table S.4.4-2 is an example of an interaction FMEA for the interlace and support requirements for system operation. [Pg.106]

A failure modes and effects analysis delineates components, their interaction.s ith each other, and the effects of their failures on their system. A key element of fault tree analysis is the identification of related fault events that can contribute to the top event. For a quantitative evaluation, the failure modes must be clearly defined and related to a numerical database. Component failure modes should be realistically and consistently postulated within the context of system operational requirements and environmental factors. [Pg.106]

How do you then design an effective system There are several techniques you can use. Failure Modes and Effect Analysis (FMEA), Fault Tree Analysis (FTA), and Theory of Constraints (TOC) are but three. The FMEA is a bottom-up approach, the FTA a top-down approach, and TOC a holistic approach. [Pg.182]

There is one technique widely used in the automotive industry for detecting and analyzing potential nonconformities Failure Modes and Effects Analysis (FMEA). There are Design FMEAs and Process FMEAs. The technique is the same - it is only the focus that is different. As clause 4.14 addresses potential nonconformities, the subject of FMEAs is treated in Part 2 Chapter 14. [Pg.201]

The lists of critical items that were described under Identifying controls in Part 2 Chapter 2, together with Failure Modes and Effects Analysis and Hazard Analysis, are techniques that aid the identification of characteristics crucial to the safe and proper functioning of the product. [Pg.255]

A failure modes and effects analysis is a systematic analytical technique for identifying potential failures in a design or a process, assessing the probability of occurrence and likely effect, and determining the measures needed to eliminate, contain, or control the effects. Action taken on the basis of an FMEA will improve safety, performance, reliability, maintainability and reduce costs. The outputs are essential to balanced and effective quality plans for both development and production as it will help focus the controls upon those products, processes, and characteristics that are at risk. It is not the intention here to give a full appreciation of the FMEA technique and readers are advised to consult other texts. [Pg.465]

Guidelines to failure modes and effects analysis (SMMT)... [Pg.568]

Potential failure mode and effects analysis (FMEA) (GM, Ford, Chrysler)... [Pg.569]

All of these factors determine the stress experienced by the workers and the extent to which operational errors will be recovered before disastrous consequences have ensued. In this context, hazard identification techniques, such as hazard and operability studies (HAZOP), failure modes and effects and criticality analysis (FMECA), fault trees, and others are useful in making the process environment more forgiving. [Pg.108]

FMECA Failure Modes and Effects of Criticality Analysis... [Pg.415]

This paper describes a reliability analysis of dual - diaphragm pumps in uranium solution service. It is part of the output from a failure modes and effects analysis of the design for a system to be installed at the Oak Ridge Y-12 plant. The study involved collecting data on pumps with Viton and Teflon diaphragms at 10 gpm and 15 gpm. [Pg.52]

Failure Modes and Effects Analysis (FMEA) A hazard identification technique in which all known failure modes of components or features of a system are considered in turn and undesired outcomes are noted. [Pg.286]

Hazard Analysis Report - Hazard and Operability Study (HAZOP), failure mode and effect analysis, quantitative fault tree analysis or what/if check list (sec Part IV for details in theses subjects)... [Pg.99]


See other pages where Failure mode and effect is mentioned: [Pg.472]    [Pg.6]    [Pg.798]    [Pg.2271]    [Pg.2271]    [Pg.74]    [Pg.76]    [Pg.267]    [Pg.295]    [Pg.415]    [Pg.51]    [Pg.94]    [Pg.106]    [Pg.442]    [Pg.461]    [Pg.510]    [Pg.557]    [Pg.567]    [Pg.1]    [Pg.289]    [Pg.499]    [Pg.1081]    [Pg.552]   
See also in sourсe #XX -- [ Pg.346 ]




SEARCH



A Failure Mode and Effects Analysis (FMEA)

Conducting a Failure Modes and Effects Analysis

Design Failure Mode and Effects Analysis

Design Failure Mode and Effects Analysis Technique

Design failure modes and effects

Effective modes

FMEA (failure modes and effects

FMECA (failure mode, effects, and criticality

Failure Mode and Effects Analysis (FMEA

Failure Mode, Effects and Critical Analysis (FMECA)

Failure Modes and Effects Analysis (FMEA) Tool

Failure Modes and Effects Summary

Failure Modes and Effects Summary FMES)

Failure Modes, Effects and Diagnostic Analysis

Failure Modes, Effects and Diagnostic Analysis FMEDA)

Failure Modes, Effects, and Critical Analysis

Failure effects

Failure mode and effect analysis

Failure mode and effects analysis FEMA)

Failure mode and effects analysis technique

Failure mode, effects, and criticality analysis FMECA)

Failure modes

Failure modes and effects analysis worksheet

Failure modes and effects criticality

Failure modes effects and criticality analysis

Failure modes effects and diagnostics

Failure modes effects and diagnostics analysis

Potential Failure Mode and Effects

Potential Failure Mode and Effects Analysis—FMEA

Software failure modes and effects analysi

System failure mode and effect analysis

© 2024 chempedia.info