Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Experimental Technique Electron Microscopy

A variety of methods have been used to characterize the solubility-limiting radionuclide solids and the nature of sorbed species at the solid/water interface in experimental studies. Electron microscopy and standard X-ray diffraction techniques can be used to identify some of the solids from precipitation experiments. X-ray absorption spectroscopy (XAS) can be used to obtain structural information on solids and is particularly useful for investigating noncrystalline and polymeric actinide compounds that cannot be characterized by X-ray diffraction analysis (Silva and Nitsche, 1995). X-ray absorption near edge spectroscopy (XANES) can provide information about the oxidation state and local structure of actinides in solution, solids, or at the solution/ solid interface. For example, Bertsch et al. (1994) used this technique to investigate uranium speciation in soils and sediments at uranium processing facilities. Many of the surface spectroscopic techniques have been reviewed recently by Bertsch and Hunter (2001) and Brown et al. (1999). Specihc recent applications of the spectroscopic techniques to radionuclides are described by Runde et al. (2002b). Rai and co-workers have carried out a number of experimental studies of the solubility and speciation of plutonium, neptunium, americium, and uranium that illustrate combinations of various solution and spectroscopic techniques (Rai et al, 1980, 1997, 1998 Felmy et al, 1989, 1990 Xia et al., 2001). [Pg.4758]

A variety of experimental techniques have been employed to research the material of this chapter, many of which we shall not even mention. For example, pressure as well as temperature has been used as an experimental variable to study volume effects. Dielectric constants, indices of refraction, and nuclear magnetic resonsance (NMR) spectra are used, as well as mechanical relaxations, to monitor the onset of the glassy state. X-ray, electron, and neutron diffraction are used to elucidate structure along with electron microscopy. It would take us too far afield to trace all these different techniques and the results obtained from each, so we restrict ourselves to discussing only a few types of experimental data. Our failure to mention all sources of data does not imply that these other techniques have not been employed to good advantage in the study of the topics contained herein. [Pg.200]

Surface Area and Permeability or Porosity. Gas or solute adsorption is typicaUy used to evaluate surface area (74,75), and mercury porosimetry is used, ia coajuactioa with at least oae other particle-size analysis, eg, electron microscopy, to assess permeabUity (76). Experimental techniques and theoretical models have been developed to elucidate the nature and quantity of pores (74,77). These iaclude the kinetic approach to gas adsorptioa of Bmaauer, Emmett, and TeUer (78), known as the BET method and which is based on Langmuir s adsorption model (79), the potential theory of Polanyi (25,80) for gas adsorption, the experimental aspects of solute adsorption (25,81), and the principles of mercury porosimetry, based on the Young-Duprn expression (24,25). [Pg.395]

Here, we will describe experimental studies on capillary filling of CNTs. Because of the focus of this chapter, we have taken examples from the work in our own laboratory certainly we may have inadvertently ignored other exciting work from other laboratories in the world. Still the preparation of a sample of purified and filled CNTs have yet to be developed, so that the study of filled tubes have been and can only be performed by electron microscopy and associated techniques. We have tried to describe in detail all the steps involved in the procedure of capillary filling, such as CNT production, opening, filling and final thermal processing. [Pg.129]

Much of the difficulty in demonstrating the mechanism of breakaway in a particular case arises from the thinness of the reaction zone and its location at the metal-oxide interface. Workers must consider (a) whether the oxide is cracked or merely recrystallised (b) whether the oxide now results from direct molecular reaction, or whether a barrier layer remains (c) whether the inception of a side reaction (e.g. 2CO - COj + C)" caused failure or (d) whether a new transport process, chemical transport or volatilisation, has become possible. In developing these mechanisms both arguments and experimental technique require considerable sophistication. As a few examples one may cite the use of density and specific surface-area measurements as routine of porosimetry by a variety of methods of optical microscopy, electron microscopy and X-ray diffraction at reaction temperature of tracer, electric field and stress measurements. Excellent metallographic sectioning is taken for granted in this field of research. [Pg.282]

Scanning electron microscopy and replication techniques provide information concerning the outer surfaces of the sample only. Accurate electron microprobe analyses require smooth surfaces. To use these techniques profitably, it is therefore necessary to incorporate these requirements into the experimental design, since the interfaces of interest are often below the external particle boundary. To investigate the zones of interest, two general approaches to sample preparation have been used. [Pg.39]

Experimentally, different structure- and surface-sensitive techniques such as in situ scanning tunnelling microscopy (STM), in situ X-ray diffraction (XRD), transition electron microscopy (TEM), and in situ infrared (IR) spectroscopy have been... [Pg.129]

An unusually extensive battery of experimental techniques was brought to bear on these comparisons of enantiomers with their racemic mixtures and of diastereomers with each other. A very sensitive Langmuir trough was constructed for the project, with temperature control from 15 to 40°C. In addition to the familiar force/area isotherms, which were used to compare all systems, measurements of surface potentials, surface shear viscosities, and dynamic suface tensions (for hysteresis only) were made on several systems with specially designed apparatus. Several microscopic techniques, epi-fluorescence optical microscopy, scanning tunneling microscopy, and electron microscopy, were applied to films of stearoylserine methyl ester, the most extensively investigated surfactant. [Pg.133]

There are three potential methods by which a protein s three-dimensional structure can be visualized X-ray diffraction, NMR and electron microscopy. The latter method reveals structural information at low resolution, giving little or no atomic detail. It is used mainly to obtain the gross three-dimensional shape of very large (multi-polypeptide) proteins, or of protein aggregates such as the outer viral caspid. X-ray diffraction and NMR are the techniques most widely used to obtain high-resolution protein structural information, and details of both the principles and practice of these techniques may be sourced from selected references provided at the end of this chapter. The experimentally determined three-dimensional structures of some polypeptides are presented in Figure 2.8. [Pg.26]

Improvements in the resolution and versatility of microscopic techniques have come about rapidly. TEM, STEM, and high-resolution electron microscopy have helped the catalytic chemist to analyze the effects of metal-support interactions and particle-size effects—developments that will probably lead to improvements in commercial technologies. Several novel analytical methods, arising from very clever experimentation, were discussed at the... [Pg.7]

There are various methods for the determination of the size distribution of organic pigment particles, the most common are sedimentation techniques in ultracentrifuges and specialized disk centrifuges as well as electron microscopy. These methods require considerable experimental skill, since the results depend largely on sample preparation and especially on the quality of the dispersion. [Pg.31]

Surface spectroscopic techniques must be separated carefully into those which require dehydration for sample presentation and those which do not. Among the former are electron microscopy and microprobe analysis, X-ray photoelectron spectroscopy, and infrared spectroscopy. These methods have been applied fruitfully to show the existence of either inner-sphere surface complexes or surface precipitates on minerals found in soils and sediments (13b,30,31-37), but the applicability of the results to natural systems is not without some ambiguity because of the dessication pretreatment involved. If independent experimental evidence for inner-sphere complexation or surface precipitation exists, these methods provide a powerful means of corroboration. [Pg.225]

The experimental techniques described above of charge—discharge and impedance are nondestructive. Tear-down analysis or disassembly of spent cells and an examination of the various components using experimental techniques such as Raman microscopy, atomic force microscopy, NMR spectroscopy, transmission electron microscopy, XAS, and the like can be carried out on materials-spent battery electrodes to better understand the phenomena that lead to degradation during use. These techniques provide diagnostic techniques that identify materials properties and materials interactions that limit lifetime, performance, and thermal stabiity. The accelerated rate calorimeter finds use in identifying safety-related situations that lead to thermal runaway and destruction of the battery. [Pg.12]

While several experimental techniques provide Information relating to dual phase continuity, the two most important methods Involve scanning electron microscopy and dynamic mechanical spectroscopy [16,22-2A]. Donatelll, et al [1 ] performed the first mechanical study on PB/PS IPN s. Figure 5 [ 6] illustrates the fit provided by the Davies equation [22] and the Budlansky equation [25,26], both of these equations derived on the assumption of dual phase continuity. [Pg.275]

In this paper, we first briefly recall the main features of the collagen molecule, then we describe the structure of the gels, using different experimental techniques (optical rotation (O.R.), electron microscopy, proton nuclear magnetic resonance (N.M.R.)) for different thermal treatments. A phenomenological and a microscopic interpretation of the mechanisms of gel formation is suggested. [Pg.212]

There has been a sharp debate for many years on the best description of the real macroconformation. Much experimental research has been carried out on pure polymers using different techniques (225) [small angle and intermediate angle neutron scattering (226), electron microscopy, IR, etc.]. Yoon and Flory (40, 228-231) and Gawrisch et al. (232) held the view that the probability of adjacent reentry in polymeric lamella is rather low (<50%) and does not justify the validity of such a model. The trajectory of the chain extends across numerous lamellae and its macroconformation is not far from that of the random coil. In the view of Keller and co-workers (224, 233-236) the adjacent reentry, although not complete (3 1 with respect to other possibilities) largely prevails. [Pg.62]


See other pages where Experimental Technique Electron Microscopy is mentioned: [Pg.109]    [Pg.988]    [Pg.109]    [Pg.988]    [Pg.223]    [Pg.394]    [Pg.85]    [Pg.50]    [Pg.415]    [Pg.388]    [Pg.852]    [Pg.252]    [Pg.226]    [Pg.119]    [Pg.158]    [Pg.253]    [Pg.175]    [Pg.489]    [Pg.547]    [Pg.313]    [Pg.198]    [Pg.228]    [Pg.65]    [Pg.26]    [Pg.355]    [Pg.82]    [Pg.41]    [Pg.220]    [Pg.189]    [Pg.5]    [Pg.69]    [Pg.228]    [Pg.211]    [Pg.436]    [Pg.31]   
See also in sourсe #XX -- [ Pg.5 , Pg.6 , Pg.7 , Pg.8 , Pg.10 ]




SEARCH



Electron microscopy techniques

Electron techniques

Experimental techniques scanning electron microscopy

Experimental techniques transmission electron microscopy

Microscopy techniques

© 2024 chempedia.info