Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Experimental and Diagnostic Techniques

Investigations in the field of shoek eompression of solid materials were originally performed for military purposes. Speeimens sueh as armor were subjected to either projectile impact or explosive detonation, and the severity and character of the resulting damage constituted the experimental data (see, e.g., Helie, 1840). Investigations of this type continue today, and although they certainly have their place, they are now considered more as engineering experiments than scientific research, inasmuch as they do little to illuminate the basic physics and material properties which determine the results of shock-compression events. [Pg.43]

The decades since World War II have seen many improvements and a diversification of the experimental and diagnostic techniques employed in [Pg.43]


Monoclonal antibodies (mAh) are molecules that recognize and bind a specific foreign substance called an antigen. They are produced from a single clone of B lymphocytes. Conventionally, mouse mAh have been generated for experimental and diagnostic use. Techniques have been developed to humanize mouse mAh to facilitate their therapeutic use in humans. It is also now possible to make mAh which are fully human. [Pg.600]

Because high quaHty, low cost, and optimum performance are required for spray equipment, improved analytical and experimental tools are iadispensable for increasing productivity ia many competitive iadustries. In most iastances, it is no longer adequate to characterize a spray solely on the basis of flow rate and spray pattern. Information on droplet size, velocity, volume flux, and number density is often needed and can be determined usiag advanced laser diagnostic techniques. These improvements have benefited a wide spectmm of consumer and specialized iadustrial products. [Pg.327]

Summary. This Chapter focuses on the investigation of fast electron transport studies in solids irradiated at relativistic laser intensities. Experimental techniques based upon space-resolved spectroscopy are presented in view of their application to both ultrashort Ka X-ray sources and fast ignition studies. Spectroscopy based upon single-photon detection is unveiled as a complementary diagnostic technique, alternative to well established techniques based upon bent crystals. Application of this technique to the study of X-ray fluorescence emission from fast electron propagation in multilayer targets is reported and explored as an example case. [Pg.123]

The experimental techniques described above of charge—discharge and impedance are nondestructive. Tear-down analysis or disassembly of spent cells and an examination of the various components using experimental techniques such as Raman microscopy, atomic force microscopy, NMR spectroscopy, transmission electron microscopy, XAS, and the like can be carried out on materials-spent battery electrodes to better understand the phenomena that lead to degradation during use. These techniques provide diagnostic techniques that identify materials properties and materials interactions that limit lifetime, performance, and thermal stabiity. The accelerated rate calorimeter finds use in identifying safety-related situations that lead to thermal runaway and destruction of the battery. [Pg.12]

By now, the possibility of deposition of granulated Cu, Ni, Pd, Pt, and Au films by laser electrodispersion has been experimentally verified. The structural parameters of the films being formed were studied by various diagnostic techniques, with the most informative results obtained with TEM, atomic-force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). [Pg.734]

In contrast to the relatively limited number of experimental approaches utilized to determine electron collisional information for C02 laser species, many different types of experiments have been employed in the determination of heavy particle rates as a function of temperature, for temperatures slightly below room temperature up to several thousand degrees. At room temperature, measurements have been obtained using sound absorption and/or dispersion as well as impact-tube and spectrophone techniques. High temperature rate data have been obtained primarily from shock tube experiments in which electron beam, infrared emission, schlieren, and interferometric diagnostic techniques are employed. For example, as many as 36 separate experiments have been conducted to determine the relaxation rate of the C02 bending mode in pure C02 [59]. The reader is referred to the review by Taylor and Bitterman [59] of heavy-particle processes of importance to laser applications for a detailed description and interpretation of available experimental and theoretical data. [Pg.440]

Measurements of the vertical velocity, far from the injection site, were made at a fixed position using a hot-film system (e.g. [108]), from which the bubble diameter and rise speed could be calculated. The accuracy of the measurements have been extensively tested at low void fractions using LDV and optical methods. The time-series of the velocity measurements were converted into spatial information using a Taylor hypothesis that a mean flow advects disturbances past the probe. Examples of the velocity time-series is shown in Fig. 7.5. A more thorough description of the experimental technique and diagnostic tools applied to the data is given in [358],... [Pg.265]


See other pages where Experimental and Diagnostic Techniques is mentioned: [Pg.43]    [Pg.45]    [Pg.47]    [Pg.49]    [Pg.51]    [Pg.53]    [Pg.55]    [Pg.57]    [Pg.59]    [Pg.61]    [Pg.63]    [Pg.65]    [Pg.69]    [Pg.71]    [Pg.73]    [Pg.601]    [Pg.601]    [Pg.348]    [Pg.43]    [Pg.45]    [Pg.47]    [Pg.49]    [Pg.51]    [Pg.53]    [Pg.55]    [Pg.57]    [Pg.59]    [Pg.61]    [Pg.63]    [Pg.65]    [Pg.69]    [Pg.71]    [Pg.73]    [Pg.601]    [Pg.601]    [Pg.348]    [Pg.604]    [Pg.604]    [Pg.14]    [Pg.167]    [Pg.271]    [Pg.389]    [Pg.1141]    [Pg.35]    [Pg.124]    [Pg.124]    [Pg.137]    [Pg.447]    [Pg.518]    [Pg.132]    [Pg.166]    [Pg.256]    [Pg.118]    [Pg.311]    [Pg.86]    [Pg.546]    [Pg.208]    [Pg.635]   


SEARCH



Diagnostic technique

© 2024 chempedia.info