Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Spatial information

Although the topic of this paper easily extends to other disciplines, only eddy-current inspections will be eonsidered here. Eddy-current inspections do not typically capture spatial information with the signal however, there are large benefits to be found by keeping the spatial component integrated with the eddy-current signal. First, we will explore different approaches to adding spatial data to an eddy-current inspection. [Pg.1015]

Keeping spatial information together with eddy-current signals as sampled scan data has many benefits. [Pg.1021]

Except for the phase-contrast detector in STEM [9], STEM and SEM detectors do not track the position of the recorded electron. The spatial information of an image is fonned instead by assigning the measured electron current to the known position of the scaimed incident electron beam. This infomiation is then mapped into a 2D pixel array, which is depicted either on a TV screen or digitalized in a computer. [Pg.1633]

Disadvantages include the tendency to lose finer-grained sediment particles as water flows out of the sampler and the loss of spatial information, both laterally and with depth, due to mixing of the sample. [Pg.197]

Elastic scattering is also the basis for Hdar, in which a laser pulse is propagated into a telescope s field of view, and the return signal is collected for detection and in some cases spectral analysis (14,196). The azimuth and elevation of the scatterers (from the orientation of the telescope), their column density (from the intensity), range (from the temporal delay), and velocity (from Doppler shifts) can be deterrnined. Such accurate, rapid three-dimensional spatial information about target species is useful in monitoring air mass movements and plume transport, and for tracking aerosols and pollutants (197). [Pg.318]

The X-ray and neutron scattering processes provide relatively direct spatial information on atomic motions via detennination of the wave vector transferred between the photon/neutron and the sample this is a Fourier transfonn relationship between wave vectors in reciprocal space and position vectors in real space. Neutrons, by virtue of the possibility of resolving their energy transfers, can also give infonnation on the time dependence of the motions involved. [Pg.238]

Spatial information about a system can be obtained by analyzing the spatial distribution of PL intensity. Fluorescent tracers may be used to image chemical uptake in biological systems. Luminescence profiles have proven useftil in the semiconductor industry for mapping impurity distributions, dislocadons, or structural homogeneity in substrate wafers or epilayers. Similar spatial infbrmadon over small regions is obtained by cathodoluminescence imaging. [Pg.380]

By making use of the spatial information, the velocity field of an extended, structured object can be obtained unambiguously without errors caused by uncertainty in the position of a feature within the slit. [Pg.173]

Fig. 8.2, takes advantage of the ability of X-rays to penetrate a thin solution layer. Together with a simple theory of backscattering, this allows very detailed spatial information to be obtained [Lucas and Markovic, 2006]. [Pg.248]

As a result of compelling three-dimensional models and remarkably high levels of precision, it is often assumed that structural elucidation by single crystal X-ray diffraction is the ultimate structural proof. Spatial information in the form of several thousands of X-ray reflection intensities are used to solve the position of a few dozen atoms so that the solution of a structure by X-ray diffraction methods is highly overdetermined, with a statistically significant precision up to a few picometers. With precise atomic positions, structural parameters in the form of bond distances, bond... [Pg.274]

Let us now derive the equations that relate the spatial information to the signal behavior. As we have seen previously, a spin at position r possesses a Larmor frequency co(r) = y B(r) = v( Bo + g r). It is convenient to subtract the reference value, given by the average field, oi0 = v B0. so that we obtain the frequency difference relative to an (arbitrarily chosen) position r= 0 ... [Pg.9]

Velocity maps of simple or complex liquids, emulsions, suspensions and other mixtures in various geometries provide valuable information about macroscopic and molecular properties of materials in motion. Two- and three-dimensional spin echo velocity imaging methods are used, where one or two dimensions contain spatial information and the remaining dimension or the image intensity contains the information of the displacement of the spins during an observation time. This information is used to calculate the velocity vectors and the dispersion at each position in the spatially resolved dimensions with the help of post-processing software. The range of observable velocities depends mainly on the time the spins... [Pg.59]

Fig. 2.6.10 Specialized experimental set-up for microfluidic flow dispersion measurements. Fluid is supplied from the top, flows via a capillary through the microfluidic device to be profiled and exits at the bottom. The whole apparatus is inserted into the bore of a superconducting magnet. Spatial information is encoded by MRI techniques, using rf and imaging gradient coils that surround the microfluidic device. They are symbolized by the hollow cylinder in the figure. After the fluid has exited the device, it is led through a capillary to a microcoil, which is used to read the encoded information in a time-resolved manner. The flow rate is controlled by a laboratory-built flow controller at the outlet [59, 60]. Fig. 2.6.10 Specialized experimental set-up for microfluidic flow dispersion measurements. Fluid is supplied from the top, flows via a capillary through the microfluidic device to be profiled and exits at the bottom. The whole apparatus is inserted into the bore of a superconducting magnet. Spatial information is encoded by MRI techniques, using rf and imaging gradient coils that surround the microfluidic device. They are symbolized by the hollow cylinder in the figure. After the fluid has exited the device, it is led through a capillary to a microcoil, which is used to read the encoded information in a time-resolved manner. The flow rate is controlled by a laboratory-built flow controller at the outlet [59, 60].
As for sample preparation, SPE-GC has become more popular than NPLC-GC. Aqueous samples are not compatible with NPLC-GC, while RPLC-GC has never become a success. SPE-GC-(tandem)MS and SPE-GC-AED systems have demonstrated excellent performance. SPME is an equilibrium technique while SPE affords exhaustive extraction of the analytes. Laser desorption injection in LD-GC-MS can uniquely provide an additional dimension of spatial information for 2D surface chemical mapping [221]. [Pg.549]

In wide field microscopy, spatial information of the entire image is acquired simultaneously thus providing comparatively short acquisition times compared with scanning microscopy implementations. Combining TCSPC with wide field microscopy is not straightforward. However, a four quadrant anode multichannel plate (MCP) has been used for time- and space-correlated SPC experiments [25, 26]. This detector has excellent timing properties that make it very suitable for FLIM. Unfortunately, it can be operated only at low count-rates ( 105-106 Hz) therefore, it requires comparatively long acquisition times (minutes). [Pg.122]

Emission ratio imaging is extremely popular due to its simplicity and speed. In essence, cells expressing donors and acceptors are illuminated at the donor wavelength and fluorescence intensity data are collected both at donor (D) and at acceptor (S) channels. Collected data may be either images, or, in case high acquisition speed is crucial and spatial information is not required, dualchannel photometer readings (see Textbox 1). S and D are not overlap-corrected and FRET is simply expressed as the ratio of intensities1 as ratio = S/D. [Pg.306]

Unlike donor-based FRET methods like FLIM, filterFRET also yields spatial information on the acceptor population. This means that in addition to querying donor-FRET (by solving for Ed or / )), we can also assess the relationship between sensitized emission and the acceptor population. At 1 1 stoichiometry obviously Ed should equal the acceptor-normalized efficiency EA. In other cases, EA deviates from E but sometimes can yield biologically more relevant information than Ed or E. For example, dislocation of 50% of the... [Pg.323]

LTP has been shown in many parts of the brain but it has been most extensively studied in the hippocampus, a phy-logenetically old part of the cerebral cortex that in humans is embedded in the temporal horn and in rats and rabbits lies beneath the parietal and temporal neocortex (Fig. 15-3A). The hippocampus is essential for (declarative) memory formation in rats the role of hippocampus in acquisition of spatial information has been studied in... [Pg.272]

Differences in mobility of various components (e.g., starch, sucrose, water) within a food system (e.g., a cookie), as well as the inherent heterogeneity of many food systems (e.g., crust versus crumb of a cookie), suggest the need to measure more than an average Tg for a system. Ruan and Chen (1998) proposed the creation of a Tg map to capture the distribution of Tg values within a food system. Since conventional techniques used to measure Tg do not have the capacity at the present time to provide spatial information, Ruan and Chen (1998) suggested the use of MRI, as a function of temperature, to produce a Tg map. ... [Pg.77]

A complete NMR approach has been employed to evaluate the complexation process of catechin A with p-CD and synthetic analogues.125 The analysis of the variation of the proton chemical shifts indicated the formation of a 1 1 stoichiometric complex. 2D-ROESY provided detailed spatial information of the complex while the binding constants were obtained by using diffusion-order spectroscopy (DOSY) techniques. [Pg.349]


See other pages where Spatial information is mentioned: [Pg.1015]    [Pg.1019]    [Pg.1019]    [Pg.162]    [Pg.428]    [Pg.112]    [Pg.100]    [Pg.103]    [Pg.173]    [Pg.15]    [Pg.147]    [Pg.366]    [Pg.392]    [Pg.498]    [Pg.574]    [Pg.301]    [Pg.470]    [Pg.160]    [Pg.510]    [Pg.528]    [Pg.938]    [Pg.163]    [Pg.503]    [Pg.135]    [Pg.50]    [Pg.820]    [Pg.951]    [Pg.128]    [Pg.279]    [Pg.197]   
See also in sourсe #XX -- [ Pg.499 ]

See also in sourсe #XX -- [ Pg.503 ]

See also in sourсe #XX -- [ Pg.9 ]




SEARCH



© 2024 chempedia.info