Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ethylene explosive conditions

GP 2[ [R 2[ Safe operation under explosive conditions using pure oxygen was demonstrated in a steel multi-plate-stack micro reactor (e.g. 3 vol.-% ethylene, 50 vol.-% oxygen, balance nitrogen 5 bar 4 1 h 277 °C) ]4, 26,40]. The cross-sections of the various micro channels employed were from 500 x 50 pm to 500 x 90 pm. ... [Pg.308]

This reaction is highly exothermic. If the heat of the reaction is not conducted thru the walls of a closed container at a rate capable of maintaining an equilibrium temperature, an increase in pressure results with an increase in reaction rate, leading to explosive conditions. Acid salts, such as stannic chloride and zinc chloride, and bases, such as alkali metal hydroxides, either solid or in aqueous solution, and tertiary amines are all effective catalysts. It is, therefore, imperative that the concentration of such contaminants be kept at a minimum when transporting or storing sizeable quantities of ethylene oxide Accdg to Hess Tilton (Ref 16), a 90% decompn takes place if 100% vapor of EtnO in a closed container is. initiated with MF. There is no upper limit of EtnO in air (the previously reported value of 80% was in error), but the lower expl limit is 3% (Ref 17, p 87)... [Pg.156]

Reactions with Organic Compounds. Tetrafluoroethylene and OF2 react spontaneously to form C2F and COF2. Ethylene and OF2 may react explosively, but under controlled conditions monofluoroethane and 1,2-difluoroethane can be recovered (33). Benzene is oxidized to quinone and hydroquinone by OF2. Methanol and ethanol are oxidized at room temperature (4). Organic amines are extensively degraded by OF2 at room temperature, but primary aHphatic amines in a fluorocarbon solvent at —42°C are smoothly oxidized to the corresponding nitroso compounds (34). [Pg.220]

Copolymerization is effected by suspension or emulsion techniques under such conditions that tetrafluoroethylene, but not ethylene, may homopolymerize. Bulk polymerization is not commercially feasible, because of heat-transfer limitations and explosion hazard of the comonomer mixture. Polymerizations typically take place below 100°C and 5 MPa (50 atm). Initiators include peroxides, redox systems (10), free-radical sources (11), and ionizing radiation (12). [Pg.365]

Process Safety Considerations. Unit optimization studies combined with dynamic simulations of the process may identify operating conditions that are unsafe regarding fire safety, equipment damage potential, and operating sensitivity. Several instances of fires and deflagrations in ethylene oxide production units have been reported in the past (160). These incidents have occurred in both the reaction cycle and ethylene oxide refining areas. Therefore, ethylene oxide units should always be designed to prevent the formation of explosive gas mixtures. [Pg.460]

Explosibility and Fire Control. As in the case of many other reactive chemicals, the fire and explosion hazards of ethylene oxide are system-dependent. Each system should be evaluated for its particular hazards including start-up, shut-down, and failure modes. Storage of more than a threshold quantity of 5000 lb (- 2300 kg) of the material makes ethylene oxide subject to the provisions of OSHA 29 CER 1910 for "Highly Hazardous Chemicals." Table 15 summarizes relevant fire and explosion data for ethylene oxide, which are at standard temperature and pressure (STP) conditions except where otherwise noted. [Pg.464]

Liquid ethylene oxide under adiabatic conditions requires about 200°C before a self-heating rate of 0.02°C/min is observed (190,191). However, in the presence of contaminants such as acids and bases, or reactants possessing a labile hydrogen atom, the self-heating temperature can be much lower (190). In large containers, mnaway reaction can occur from ambient temperature, and destmctive explosions may occur (268,269). [Pg.465]

Violent explosions occur when fluorine directly contacts liquid hydrocarbons, even at —210 with anthracene or turpentine, or solid methane at — 190°C with liquid fluorine. Many lubricants ignite in fluorine [1,2]. Contact and reaction under carefully controlled conditions with catalysis can now be effected smoothly [3], Gaseous hydrocarbons (town gas, methane) ignite in contact with fluorine, and mixtures with unsaturated hydrocarbons (ethylene, acetylene) may explode on exposure to sunlight. Each bubble of fluorine passed through benzene causes ignition, but a rapid stream may lead to explosion [4],... [Pg.1514]

The explosive phenomena produced by contact of liquefied gases with water were studied. Chlorodifluoromethane produced explosions when the liquid-water temperature differential exceeded 92°C, and propene did so at differentials of 96-109°C. Liquid propane did, but ethylene did not, produce explosions under the conditions studied [1], The previous literature on superheated vapour explosions has been critically reviewed, and new experimental work shows the phenomenon to be more widespread than had been thought previously. The explosions may be quite violent, and mixtures of liquefied gases may produce overpressures above 7 bar [2], Alternative explanations involve detonation driven by phase changes [3,4] and do not involve chemical reactions. Explosive phase transitions from superheated liquid to vapour have also been induced in chlorodifluoromethane by 1.0 J pulsed ruby laser irradiation. Metastable superheated states (of 25°C) achieved lasted some 50 ms, the expected detonation pressure being 4-5 bar [5], See LIQUEFIED NATURAL GAS, SUPERHEATED LIQUIDS, VAPOUR EXPLOSIONS... [Pg.216]

Explosibility. Liquid ethylene oxide is stable to detonating agents, but the vapor will undergo explosive decomposition. Pure ethylene oxide vapor will decompose partially however, a slight dilution with air or a small increase in initial pressure provides an ideal condition for complete decomposition. Copper or other acetylide-forming metals such as silver, magpesium, and alloys of such metals should not be used to handle or store ethylene oxide because of the danger of the possible presence of acetylene. Acetylides detonate readily and will initiate explosive decomposition of ethylene oxide vapor. In the presence of certain catalysts, liquid ethylene oxide forms a poly-condensate. [Pg.156]

In the two-stage process the alkene is reacted with the catalyst system (100-110°C, 10 atm). The reduced catalyst solution containing Cu2Cl2 is reoxidized with air in a second reactor under the same conditions. In both cases about 95% oxo yield is achieved at 95-99% alkene conversion. Because of the explosion hazard of mixing ethylene or propylene with pure oxygen, most commercial operations favor the less hazardous two-stage process. [Pg.509]

Fifty to sixty per cent of ethylene reacts in accordance with eqn. (4), and 40-50% in accordance with eqn. (5). Numerous attempts to use an oil comprising a mixture of (I) and (II) in the manufacture of explosives have been unsuccessful, because jS-nitroethyl alcohol nitrate is insufficiently stable. Experiments have been made to partially hydrolyse the oil with hot water at 80-90°C. Under these conditions nitroethyl nitrate undergoes decomposition, whereas nitroglycol remains unchanged (Oehme [25]). However, the method was not adopted in practice because the yield of nitroglycol is relatively low, i.e. about 40% by weight of the oily product. [Pg.146]

During maintenance work, simultaneous release of chlorine and acetylene from two plants into a common vent line leading to a flare caused an explosion in the line [10]. The violent interaction of liquid chlorine injected into ethane at 80°C/10 bar becomes very violent if ethylene is also present [11]. The relationship between critical pressure and composition for self-ignition of chlorine—propane mixtures at 300°C was studied, and the tendency is minimal for 60 40 mixtures. Combustion is explosive under some conditions [12]. Precautions to prevent explosions during chlorination of solid paraffin hydrocarbons are detailed [13]. In the continuous chlorination of polyisobutene at below 100°C in absence of air, changes in conditions (increase in chlorine flow, decrease in polymer feed) leading to over-chlorination caused an exotherm to 130°C and ignition [14],... [Pg.1453]


See other pages where Ethylene explosive conditions is mentioned: [Pg.844]    [Pg.165]    [Pg.354]    [Pg.295]    [Pg.460]    [Pg.36]    [Pg.400]    [Pg.332]    [Pg.76]    [Pg.105]    [Pg.38]    [Pg.262]    [Pg.295]    [Pg.296]    [Pg.313]    [Pg.1407]    [Pg.1611]    [Pg.204]    [Pg.416]    [Pg.46]    [Pg.397]    [Pg.295]    [Pg.408]    [Pg.354]    [Pg.590]    [Pg.460]    [Pg.190]    [Pg.292]    [Pg.329]    [Pg.330]    [Pg.348]    [Pg.1403]   
See also in sourсe #XX -- [ Pg.308 ]




SEARCH



Ethylene explosions

Explosion explosive conditions

© 2024 chempedia.info